Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Click biology highlights the opportunities from reliable biological reactions

Abstract

Click chemistry is a powerful concept that refers to a set of covalent bond-forming reactions with highly favorable properties. In this Perspective, I outline the analogous concept of click biology as a set of reactions derived from the regular building blocks of living cells, rapidly forming covalent bonds to specific partners under cell-friendly conditions. Click biology using protein components employs canonical amino acids and may react close to the diffusion limit, with selectivity in living cells amid thousands of components generated from the same building blocks. I discuss how the criteria for click chemistry can be applied or modified to fit the extra constraints of click biology and achieve favorable characteristics for biological research. Existing reactions that may be described as click biology include split intein reconstitution, spontaneous isopeptide bond formation by SpyTag and SpyCatcher and suicide enzyme reaction with small-molecule ligands (HaloTag and SNAP-tag). I also describe how click biology has created new possibilities in fields including molecular imaging, mechanobiology, vaccines and engineering cellular intelligence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the comparison of click chemistry and click biology.
Fig. 2: Click biology criteria and example reactions.
Fig. 3: Inhomogeneous compared to homogeneous protein labeling.
Fig. 4: Consequence of click reaction speed.
Fig. 5: Noncanonical architectures from click biology.
Fig. 6: Extending molecular function through click biology.

Similar content being viewed by others

References

  1. Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. Engl. 40, 2004–2021 (2001). The pioneering treatise setting out philosophy, practice and potential of click chemistry.

    Article  CAS  PubMed  Google Scholar 

  2. Patterson, D. M., Nazarova, L. A. & Prescher, J. A. Finding the right (bioorthogonal) chemistry. ACS Chem. Biol. 9, 592–605 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Bertozzi, C. A special virtual issue celebrating the 2022 Nobel Prize in Chemistry for the development of click chemistry and bioorthogonal chemistry. ACS Cent. Sci. 9, 558–559 (2023).

    Article  CAS  PubMed  Google Scholar 

  4. Oliveira, B. L., Guo, Z. & Bernardes, G. J. L. Inverse electron demand Diels–Alder reactions in chemical biology. Chem. Soc. Rev. 46, 4895–4950 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Bohacek, R. S., McMartin, C. & Guida, W. C. The art and practice of structure-based drug design: a molecular modeling perspective. Med. Res. Rev. 16, 3–50 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Bauer, D., Cornejo, M. A., Hoang, T. T., Lewis, J. S. & Zeglis, B. M. Click chemistry and radiochemistry: an update. Bioconjug. Chem. 34, 1925–1950 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Srinivasan, S. et al. SQ3370, the first clinical click chemistry-activated cancer therapeutic, shows safety in humans and translatability across species. Preprint at bioRxiv https://doi.org/10.1101/2023.03.28.534654 (2023).

  8. Sun, F. & Zhang, W.-B. Genetically encoded click chemistry. Chin. J. Chem. 38, 894–896 (2020).

    Article  CAS  Google Scholar 

  9. Kraut, D. A., Carroll, K. S. & Herschlag, D. Challenges in enzyme mechanism and energetics. Annu. Rev. Biochem. 72, 517–571 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Shah, N. H. & Muir, T. W. Inteins: nature’s gift to protein chemists. Chem. Sci. 5, 446–461 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Wu, H., Hu, Z. & Liu, X.-Q. Protein trans-splicing by a split intein encoded in a split DnaE gene of Synechocystis sp. PCC6803. Proc. Natl Acad. Sci. USA 95, 9226–9231 (1998). The discovery of how a DNA polymerase component from a cyanobacterium is expressed in two fragments, which reconstitute and splice together the functional protein, leading on to the future identification of many split inteins and powerful tools for click biology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Eryilmaz, E., Shah, N. H., Muir, T. W. & Cowburn, D. Structural and dynamical features of inteins and implications on protein splicing. J. Biol. Chem. 289, 14506–14511 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mills, K. V., Johnson, M. A. & Perler, F. B. Protein splicing: how inteins escape from precursor proteins. J. Biol. Chem. 289, 14498–14505 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Anastassov, S., Filo, M. & Khammash, M. Inteins: a Swiss army knife for synthetic biology. Biotechnol. Adv. 73, 108349 (2024).

    Article  CAS  PubMed  Google Scholar 

  15. Bhagawati, M. et al. In cellulo protein semi-synthesis from endogenous and exogenous fragments using the ultra-fast split Gp41-1 intein. Angew. Chem. Int. Ed. Engl. 59, 21007–21015 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pinto, F., Thornton, E. L. & Wang, B. An expanded library of orthogonal split inteins enables modular multi-peptide assemblies. Nat. Commun. 11, 1529 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Carvajal-Vallejos, P., Pallisse, R., Mootz, H. D. & Schmidt, S. R. Unprecedented rates and efficiencies revealed for new natural split inteins from metagenomic sources. J. Biol. Chem. 287, 28686–28696 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gramespacher, J. A., Stevens, A. J., Thompson, R. E. & Muir, T. W. Improved protein splicing using embedded split inteins. Protein Sci. 27, 614–619 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bhagawati, M. et al. A mesophilic cysteine-less split intein for protein trans-splicing applications under oxidizing conditions. Proc. Natl Acad. Sci. USA 116, 22164–22172 (2019). This study overcomes the obstacle of many split inteins requiring reducing conditions, optimizing a bacteriophage split intein that contains key reactive serines instead of cysteines, allowing molecular surgery at the cell surface.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Burton, A. J., Haugbro, M., Parisi, E. & Muir, T. W. Live-cell protein engineering with an ultra-short split intein. Proc. Natl Acad. Sci. USA 117, 12041–12049 (2020). Lake Vida has ice all year round and contains water with exceptional salinity. From this frigid landscape, a split intein platform was shown to react with outstanding speed and efficiency, allowing precision editing on histones within living cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Neugebauer, M., Böcker, J. K., Matern, J. C. J., Pietrokovski, S. & Mootz, H. D. Development of a screening system for inteins active in protein splicing based on intein insertion into the LacZα-peptide. Biol. Chem. 398, 57–67 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Popa, M. P., McKelvey, T. A., Hempel, J. & Hendrix, R. W. Bacteriophage HK97 structure: wholesale covalent cross-linking between the major head shell subunits. J. Virol. 65, 3227–3237 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wikoff, W. R. et al. Topologically linked protein rings in the bacteriophage HK97 capsid. Science 289, 2129–2133 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Kang, H. J. & Baker, E. N. Intramolecular isopeptide bonds: protein crosslinks built for stress? Trends Biochem. Sci. 36, 229–237 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Zakeri, B. & Howarth, M. Spontaneous intermolecular amide bond formation between side chains for irreversible peptide targeting. J. Am. Chem. Soc. 132, 4526–4527 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Zakeri, B. et al. Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc. Natl Acad. Sci. USA 109, E690–E697 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Keeble, A. H. et al. Evolving accelerated amidation by SpyTag/SpyCatcher to analyze membrane dynamics. Angew. Chem. Int. Ed. Engl. 56, 16521–16525 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Keeble, A. H. et al. Approaching infinite affinity through engineering of peptide–protein interaction. Proc. Natl Acad. Sci. USA 116, 26523–26533 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang, S. et al. One-step construction of circularized nanodiscs using SpyCatcher–SpyTag. Nat. Commun. 12, 5451 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Veggiani, G. et al. Programmable polyproteams built using twin peptide superglues. Proc. Natl Acad. Sci. USA 113, 1202–1207 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Keeble, A. H. et al. DogCatcher allows loop-friendly protein–protein ligation. Cell Chem. Biol. 29, 339–350 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fan, R. & Aranko, A. S. Catcher/Tag toolbox: biomolecular click-reactions for protein engineering beyond genetics. ChemBioChem 25, e202300600 (2024).

    CAS  Google Scholar 

  33. Dicks, M. D. J. et al. Modular capsid decoration boosts adenovirus vaccine-induced humoral immunity against SARS-CoV-2. Mol. Ther. 30, 3639–3657 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fantoni, N. Z., El-Sagheer, A. H. & Brown, T. A hitchhiker’s guide to click-chemistry with nucleic acids. Chem. Rev. 121, 7122–7154 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Driscoll, C. L., Keeble, A. H. & Howarth, M. R. SpyMask enables combinatorial assembly of bispecific binders. Nat. Commun. 15, 2403 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Los, G. V. et al. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem. Biol. 3, 373–382 (2008). A tour de force in enzymology converts a bacterial dehalogenase into a self-labeling enzyme, including extensive semi-rational optimization and demonstration of the power of the covalent labeling across a range of methods.

    Article  CAS  PubMed  Google Scholar 

  37. Encell, L. P. et al. Development of a dehalogenase-based protein fusion tag capable of rapid, selective and covalent attachment to customizable ligands. Curr. Chem. Genomics 6, 55–71 (2012).

    Google Scholar 

  38. Deprey, K. & Kritzer, J. A. HaloTag forms an intramolecular disulfide. Bioconjug. Chem. 32, 964–970 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Frei, M. S. et al. Engineered HaloTag variants for fluorescence lifetime multiplexing. Nat. Methods 19, 65–70 (2022).

    Article  CAS  PubMed  Google Scholar 

  40. Chen, W., Younis, M. H., Zhao, Z. & Cai, W. Recent biomedical advances enabled by HaloTag technology. Biocell 46, 1789–1801 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu, D. S., Phipps, W. S., Loh, K. H., Howarth, M. & Ting, A. Y. Quantum dot targeting with lipoic acid ligase and HaloTag for single-molecule imaging on living cells. ACS Nano 6, 11080–11087 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Neklesa, T. K. et al. Small-molecule hydrophobic tagging-induced degradation of HaloTag fusion proteins. Nat. Chem. Biol. 7, 538–543 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu, X., Long, M. J. C. & Aye, Y. Proteomics and beyond: cell decision-making shaped by reactive electrophiles. Trends Biochem. Sci. 44, 75–89 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Keppler, A. et al. A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat. Biotechnol. 21, 86–89 (2003). Conversion of a DNA repair enzyme into a powerful approach for cellular labeling: the establishment of SNAP-tag chemistry.

    Article  CAS  PubMed  Google Scholar 

  45. Dreyer, R., Pfukwa, R., Barth, S., Hunter, R. & Klumperman, B. The evolution of SNAP-tag labels. Biomacromolecules 24, 517–530 (2023).

    Article  CAS  PubMed  Google Scholar 

  46. Sun, X. et al. Development of SNAP-tag fluorogenic probes for wash-free fluorescence imaging. ChemBioChem 12, 2217–2226 (2011).

    CAS  Google Scholar 

  47. Gautier, A. et al. An engineered protein tag for multiprotein labeling in living cells. Chem. Biol. 15, 128–136 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Zimmermann, M. et al. Cell-permeant and photocleavable chemical inducer of dimerization. Angew. Chem. Int. Ed. Engl. 53, 4717–4720 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nakamura, H., Yoshikawa, M., Oda-Ueda, N., Ueda, T. & Ohkuri, T. A comprehensive analysis of novel disulfide bond introduction site into the constant ___domain of human Fab. Sci. Rep. 11, 12937 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rossi, E. A., Goldenberg, D. M. & Chang, C. H. Complex and defined biostructures with the dock-and-lock method. Trends Pharmacol. Sci. 33, 474–481 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Liu, X. et al. Structure-based reactivity profiles of reactive metabolites with glutathione. Chem. Res. Toxicol. 33, 1579–1593 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Chiu, J. & Hogg, P. J. Allosteric disulfides: sophisticated molecular structures enabling flexible protein regulation. J. Biol. Chem. 294, 2949–2960 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Garrido Ruiz, D., Sandoval-Perez, A., Rangarajan, A. V., Gunderson, E. L. & Jacobson, M. P. Cysteine oxidation in proteins: structure, biophysics, and simulation. Biochemistry 61, 2165–2176 (2022).

    Article  CAS  PubMed  Google Scholar 

  54. Dent, M. R. & DeMartino, A. W. Nitric oxide and thiols: chemical biology, signalling paradigms and vascular therapeutic potential. Br. J. Pharmacol. https://doi.org/10.1111/bph.16274 (2023).

    Article  PubMed  Google Scholar 

  55. Griffin, B. A., Adams, S. R. & Tsien, R. Y. How FlAsH got its sparkle: historical recollections of the biarsenical-tetracysteine tag. Methods Mol. Biol. 1266, 1–6 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Mo, J. et al. Third-generation covalent TMP-tag for fast labeling and multiplexed imaging of cellular proteins. Angew. Chem. Int. Ed. Engl. 61, e202207905 (2022).

    Article  CAS  PubMed  Google Scholar 

  57. Liu, W., Samanta, S. K., Smith, B. D. & Isaacs, L. Synthetic mimics of biotin/(strept)avidin. Chem. Soc. Rev. 46, 2391–2403 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Green, N. M. Avidin and streptavidin. Methods Enzymol. 184, 51–67 (1990).

    Article  CAS  PubMed  Google Scholar 

  59. Beckett, D., Kovaleva, E. & Schatz, P. J. A minimal peptide substrate in biotin holoenzyme synthetase-catalyzed biotinylation. Protein Sci. 8, 921–929 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Howarth, M., Takao, K., Hayashi, Y. & Ting, A. Y. Targeting quantum dots to surface proteins in living cells with biotin ligase. Proc. Natl Acad. Sci. USA 102, 7583–7588 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chivers, C. E. et al. A streptavidin variant with slower biotin dissociation and increased mechanostability. Nat. Methods 7, 391–393 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Christeller, J. T., Markwick, N. P., Burgess, E. P. J. & Malone, L. A. The use of biotin-binding proteins for insect control. J. Econ. Entomol. 103, 497–508 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Howarth, M. et al. A monovalent streptavidin with a single femtomolar biotin binding site. Nat. Methods 3, 267–273 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Demonte, D., Drake, E. J., Lim, K. H., Gulick, A. M. & Park, S. Structure-based engineering of streptavidin monomer with a reduced biotin dissociation rate. Proteins 81, 1621–1633 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Fairhead, M. et al. SpyAvidin hubs enable precise and ultrastable orthogonal nanoassembly. J. Am. Chem. Soc. 136, 12355–12363 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Narayanan, K. B. & Han, S. S. Peptide ligases: a novel and potential enzyme toolbox for catalytic cross-linking of protein/peptide-based biomaterial scaffolds for tissue engineering. Enzyme Microb. Technol. 155, 109990 (2022).

    Article  CAS  PubMed  Google Scholar 

  67. Pishesha, N., Ingram, J. R. & Ploegh, H. L. Sortase A: a model for transpeptidation and its biological applications. Annu. Rev. Cell Dev. Biol. 34, 163–188 (2018).

    Article  CAS  PubMed  Google Scholar 

  68. Yin, J. et al. Genetically encoded short peptide tag for versatile protein labeling by Sfp phosphopantetheinyl transferase. Proc. Natl Acad. Sci. USA 102, 15815–15820 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wu, P. et al. Site-specific chemical modification of recombinant proteins produced in mammalian cells by using the genetically encoded aldehyde tag. Proc. Natl Acad. Sci. USA 106, 3000–3005 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Agarwal, P., van der Weijden, J., Sletten, E. M., Rabuka, D. & Bertozzi, C. R. A Pictet–Spengler ligation for protein chemical modification. Proc. Natl Acad. Sci. USA 110, 46–51 (2013).

    Article  PubMed  Google Scholar 

  71. Sun, B. & Kumar, S. Protein adsorption loss—the bottleneck of single-cell proteomics. J. Proteome Res. 21, 1808–1815 (2022).

    Article  CAS  PubMed  Google Scholar 

  72. Guo, J. et al. The development of proximity labeling technology and its applications in mammals, plants, and microorganisms. Cell Commun. Signal. 21, 269 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Seckute, J. & Devaraj, N. K. Expanding room for tetrazine ligations in the in vivo chemistry toolbox. Curr. Opin. Chem. Biol. 17, 761–767 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Uematsu, M. & Baskin, J. M. Chemical approaches for measuring and manipulating lipids at the organelle level. Cold Spring Harb. Perspect. Biol. 15, a041407 (2023).

    CAS  Google Scholar 

  75. Johnson, J. A., Lu, Y. Y., Van Deventer, J. A. & Tirrell, D. A. Residue-specific incorporation of non-canonical amino acids into proteins: recent developments and applications. Curr. Opin. Chem. Biol. 14, 774–780 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dube, D. H. & Bertozzi, C. R. Metabolic oligosaccharide engineering as a tool for glycobiology. Curr. Opin. Chem. Biol. 7, 616–625 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Salic, A. & Mitchison, T. J. A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc. Natl Acad. Sci. USA 105, 2415–2420 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. de la Torre, D. & Chin, J. W. Reprogramming the genetic code. Nat. Rev. Genet. 22, 169–184 (2021).

    Article  PubMed  Google Scholar 

  79. Hodneland, C. D., Lee, Y.-S., Min, D.-H. & Mrksich, M. Selective immobilization of proteins to self-assembled monolayers presenting active site-directed capture ligands. Proc. Natl Acad. Sci. USA 99, 5048–5052 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mizukami, S., Hori, Y. & Kikuchi, K. Small-molecule-based protein-labeling technology in live cell studies: probe-design concepts and applications. Acc. Chem. Res. 47, 247–256 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Minoshima, M. et al. Development of a versatile protein labeling tool for live-cell imaging using fluorescent β-lactamase inhibitors. Angew. Chem. Int. Ed. Engl. 62, e202301704 (2023).

    Article  CAS  PubMed  Google Scholar 

  82. Whitesides, G. M. Cool, or simple and cheap? Why not both? Lab Chip 13, 11–13 (2013). An important philosophical perspective on the value of simplicity, in contrast to the frequent academic tendency to promote expensive and intricate solutions.

    CAS  Google Scholar 

  83. Keeble, A. H. & Howarth, M. Insider information on successful covalent protein coupling with help from SpyBank. Methods Enzymol. 617, 443–461 (2019).

    Article  CAS  PubMed  Google Scholar 

  84. McLachlan, G. et al. Progress in respiratory gene therapy. Hum. Gene Ther. 33, 893–912 (2022).

    CAS  Google Scholar 

  85. Borkowski, O. et al. Cell-free prediction of protein expression costs for growing cells. Nat. Commun. 9, 1457 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Nikić, I., Kang, J. H., Girona, G. E., Aramburu, I. V. & Lemke, E. A. Labeling proteins on live mammalian cells using click chemistry. Nat. Protoc. 10, 780–791 (2015).

    Article  PubMed  Google Scholar 

  87. Zimmerman, J. B., Anastas, P. T., Erythropel, H. C. & Leitner, W. Designing for a green chemistry future. Science 367, 397–400 (2020).

    Article  CAS  PubMed  Google Scholar 

  88. Paloheimo, M., Haarmann, T., Mäkinen, S. & Vehmaanperä, J. Production of industrial enzymes in Trichoderma reesei. In Gene Expression Systems in Fungi: Advancements and Applications (eds Schmoll, M. & Dattenböck, C.) 23–57 (Springer Nature, 2016).

  89. Tyndall, S. M., Maloney, G. R., Cole, M. B., Hazell, N. G. & Augustin, M. A. Critical food and nutrition science challenges for plant-based meat alternative products. Crit. Rev. Food Sci. Nutr. 64, 638–653 (2024).

    Article  PubMed  Google Scholar 

  90. Way, J. C., Collins, J. J., Keasling, J. D. & Silver, P. A. Integrating biological redesign: where synthetic biology came from and where it needs to go. Cell 157, 151–161 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Keeble, A. H. & Howarth, M. Power to the protein: enhancing and combining activities using the Spy toolbox. Chem. Sci. 11, 7281–7291 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Rahikainen, R. et al. Overcoming symmetry mismatch in vaccine nanoassembly through spontaneous amidation. Angew. Chem. Int. Ed. Engl. 60, 321–330 (2021).

    Article  CAS  PubMed  Google Scholar 

  93. Balchin, D., Hayer-Hartl, M. & Hartl, F. U. Recent advances in understanding catalysis of protein folding by molecular chaperones. FEBS Lett. 594, 2770–2781 (2020).

    Article  CAS  PubMed  Google Scholar 

  94. Radanović, T. & Ernst, R. The unfolded protein response as a guardian of the secretory pathway. Cells 10, 2965 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Jain, T. et al. Biophysical properties of the clinical-stage antibody landscape. Proc. Natl Acad. Sci. USA 114, 944–949 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Houk, K. N., Leach, A. G., Kim, S. P. & Zhang, X. Binding affinities of host–guest, protein–ligand, and protein-transition-state complexes. Angew. Chem. Int. Ed. Engl. 42, 4872–4897 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Yen, C. et al. The development of global vaccine stockpiles. Lancet Infect. Dis. 15, 340–347 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Minutolo, N. G. et al. Quantitative control of gene-engineered T-cell activity through the covalent attachment of targeting ligands to a universal immune receptor. J. Am. Chem. Soc. 142, 6554–6568 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Brune, K. D. & Howarth, M. New routes and opportunities for modular construction of particulate vaccines: stick, click, and glue. Front. Immunol. 9, 1432 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Merrill, R. A. et al. A robust and economical pulse-chase protocol to measure the turnover of HaloTag fusion proteins. J. Biol. Chem. 294, 16164–16171 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lin, D. et al. Time-tagged ticker tapes for intracellular recordings. Nat. Biotechnol. 41, 631–639 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Donovan, D. A. et al. Engineered chromatin remodeling proteins for precise nucleosome positioning. Cell Rep. 29, 2520–2535 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Vester, S. K. et al. SpySwitch enables pH- or heat-responsive capture and release for plug-and-display nanoassembly. Nat. Commun. 13, 3714 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kompa, J. et al. Exchangeable HaloTag ligands for super-resolution fluorescence microscopy. J. Am. Chem. Soc. 145, 3075–3083 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Moran, U., Phillips, R. & Milo, R. SnapShot: key numbers in biology. Cell 141, 1262 (2010).

    Article  PubMed  Google Scholar 

  106. Wilhelm, J. et al. Kinetic and structural characterization of the self-labeling protein tags HaloTag7, SNAP-tag, and CLIP-tag. Biochemistry 60, 2560–2575 (2021).

    Article  CAS  PubMed  Google Scholar 

  107. Krämer, K. How click conquered chemistry. Chem World www.chemistryworld.com/features/how-click-conquered-chemistry/4016366.article (2022).

  108. van den Bosch, S. M. et al. Evaluation of strained alkynes for Cu-free click reaction in live mice. Nucl. Med. Biol. 40, 415–423 (2013).

    Article  PubMed  Google Scholar 

  109. Sasmal, P. K. et al. Catalytic azide reduction in biological environments. ChemBioChem 13, 1116–1120 (2012).

    CAS  Google Scholar 

  110. Versteegen, R. M., Rossin, R., ten Hoeve, W., Janssen, H. M. & Robillard, M. S. Click to release: instantaneous doxorubicin elimination upon tetrazine ligation. Angew. Chem. Int. Ed. Engl. 52, 14112–14116 (2013).

    Article  CAS  PubMed  Google Scholar 

  111. Darko, A. et al. Conformationally strained trans-cyclooctene with improved stability and excellent reactivity in tetrazine ligation. Chem. Sci. 5, 3770–3776 (2014).

    Article  CAS  PubMed  Google Scholar 

  112. Swift, J. L., Heuff, R. & Cramb, D. T. A two-photon excitation fluorescence cross-correlation assay for a model ligand–receptor binding system using quantum dots. Biophys. J. 90, 1396–1410 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Pabis, A., Risso, V. A., Sanchez-Ruiz, J. M. & Kamerlin, S. C. Cooperativity and flexibility in enzyme evolution. Curr. Opin. Struct. Biol. 48, 83–92 (2018).

  114. Clarke, A. et al. A low temperature limit for life on earth. PLoS ONE 8, e66207 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kashefi, K. & Lovley, D. R. Extending the upper temperature limit for life. Science 301, 934 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Linser, P. J., Smith, K. E., Seron, T. J. & Neira Oviedo, M. Carbonic anhydrases and anion transport in mosquito midgut pH regulation. J. Exp. Biol. 212, 1662–1671 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Choi, J. J. et al. Protein trans-splicing and characterization of a split family B-type DNA polymerase from the hyperthermophilic archaeal parasite Nanoarchaeum equitans. J. Mol. Biol. 356, 1093–1106 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Perugino, G. et al. Activity and regulation of archaeal DNA alkyltransferase. J. Biol. Chem. 287, 4222–4231 (2012).

    Article  CAS  PubMed  Google Scholar 

  119. Wang, Y., Shi, Y., Hellinga, H. W. & Beese, L. S. Thermally controlled intein splicing of engineered DNA polymerases provides a robust and generalizable solution for accurate and sensitive molecular diagnostics. Nucleic Acids Res. 51, 5883–5894 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Courchesne, N. M. D., Duraj-Thatte, A., Tay, P. K. R., Nguyen, P. Q. & Joshi, N. S. Scalable production of genetically engineered nanofibrous macroscopic materials via filtration. ACS Biomater. Sci. Eng. 3, 733–741 (2017).

    Google Scholar 

  121. Schoene, C., Bennett, S. P. & Howarth, M. SpyRing interrogation: analyzing how enzyme resilience can be achieved with phytase and distinct cyclization chemistries. Sci. Rep. 6, 21151 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Mouysset, B., Le Grand, M., Camoin, L. & Pasquier, E. Poly-pharmacology of existing drugs: how to crack the code? Cancer Lett. 588, 216800 (2024).

    Article  CAS  PubMed  Google Scholar 

  123. England, C. G., Luo, H. & Cai, W. HaloTag technology: a versatile platform for biomedical applications. Bioconjug. Chem. 26, 975–986 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Liu, X. et al. Split chimeric antigen receptor-modified T cells targeting glypican-3 suppress hepatocellular carcinoma growth with reduced cytokine release. Ther. Adv. Med. Oncol. 12, 1758835920910347 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Roy, A. & Gauld, J. W. Sulfilimine bond formation in collagen IV. Chem. Commun. 60, 646–657 (2024).

    Article  CAS  Google Scholar 

  126. Alibardi, L. Vertebrate keratinization evolved into cornification mainly due to transglutaminase and sulfhydryl oxidase activities on epidermal proteins: an immunohistochemical survey. Anat. Rec. 305, 333–358 (2022).

    Article  CAS  Google Scholar 

  127. Rajendran, A. K. et al. Trends in mechanobiology guided tissue engineering and tools to study cell–substrate interactions: a brief review. Biomater. Res. 27, 55 (2023).

    Article  CAS  Google Scholar 

  128. Otomo, T., Teruya, K., Uegaki, K., Yamazaki, T. & Kyogoku, Y. Improved segmental isotope labeling of proteins and application to a larger protein. J. Biomol. NMR 14, 105–114 (1999).

    Article  CAS  PubMed  Google Scholar 

  129. Modica, J. A., Skarpathiotis, S. & Mrksich, M. Modular assembly of protein building blocks to create precisely defined megamolecules. ChemBioChem 13, 2331–2334 (2012). Demonstration of the power of high-yield irreversible covalent coupling with HaloTag and cutinase for generating novel classes of protein architecture.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Fryer, T. et al. Gigavalent display of proteins on monodisperse polyacrylamide hydrogels as a versatile modular platform for functional assays and protein engineering. ACS Cent. Sci. 8, 1182–1195 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Khairil Anuar, I. N. A. et al. Spy&Go purification of SpyTag-proteins using pseudo-SpyCatcher to access an oligomerization toolbox. Nat. Commun. 10, 1734 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Sun, F., Zhang, W. B., Mahdavi, A., Arnold, F. H. & Tirrell, D. A. Synthesis of bioactive protein hydrogels by genetically encoded SpyTag–SpyCatcher chemistry. Proc. Natl Acad. Sci. USA 111, 11269–11274 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wang, R., Yang, Z., Luo, J., Hsing, I. M. & Sun, F. B12-dependent photoresponsive protein hydrogels for controlled stem cell/protein release. Proc. Natl Acad. Sci. USA 114, 5912–5917 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Scott, C. P., Abel-Santos, E., Jones, A. D. & Benkovic, S. J. Structural requirements for the biosynthesis of backbone cyclic peptide libraries. Chem. Biol. 8, 801–815 (2001). Given the power of cyclization to reduce peptide flexibility and degradation, showing how split intein cyclization allows selection of potential drug leads.

    Article  CAS  PubMed  Google Scholar 

  135. Sohrabi, C., Foster, A. & Tavassoli, A. Methods for generating and screening libraries of genetically encoded cyclic peptides in drug discovery. Nat. Rev. Chem. 4, 90–101 (2020).

    Article  CAS  PubMed  Google Scholar 

  136. Schoene, C., Bennett, S. P. & Howarth, M. SpyRings declassified: a blueprint for using isopeptide-mediated cyclization to enhance enzyme thermal resilience. Methods Enzymol. 580, 149–167 (2016).

    Article  CAS  PubMed  Google Scholar 

  137. Zhang, W. B., Sun, F., Tirrell, D. A. & Arnold, F. H. Controlling macromolecular topology with genetically encoded SpyTag–SpyCatcher chemistry. J. Am. Chem. Soc. 135, 13988–13997 (2013). Establishing a simple route to prepare a panel of programmed nonlinear protein topologies through efficient isopeptide bond formation.

    Article  CAS  PubMed  Google Scholar 

  138. Li, T., Zhang, F., Fang, J., Liu, Y. & Zhang, W.-B. Rational design and cellular synthesis of proteins with unconventional chemical topology. Chin. J. Chem. 41, 2873–2880 (2023).

    Article  CAS  Google Scholar 

  139. Zhang, F., Liu, Y., Da, X.-D. & Zhang, W.-B. Toward selective synthesis of protein olympiadanes via orthogonal active templates in one step. CCS Chem. 6, 1047–1059 (2023). Integrating supramolecular chemistry with protein engineering, this paper harnesses multiple genetically directed couplings to achieve intricate mechanically interlocked architectures.

    Article  Google Scholar 

  140. Hong, H. et al. HaloTag: a novel reporter gene for positron emission tomography. Am. J. Transl. Res. 3, 392–403 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Strauch, R. C. et al. Reporter protein-targeted probes for magnetic resonance imaging. J. Am. Chem. Soc. 133, 16346–16349 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Li, Y. et al. Conformable self-assembling amyloid protein coatings with genetically programmable functionality. Sci. Adv. 6, eaba1425 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Williams, D. M. et al. Facile protein immobilization using engineered surface-active biofilm proteins. ACS Appl. Nano Mater. 1, 2483–2488 (2018).

    Article  CAS  Google Scholar 

  144. Ma, W. et al. Modular assembly of proteins on nanoparticles. Nat. Commun. 9, 1489 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Wang, F. et al. General and robust covalently linked graphene oxide affinity grids for high-resolution cryo-EM. Proc. Natl Acad. Sci. USA 117, 24269–24273 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Ramlaul, K. et al. A 3D-printed flow-cell for on-grid purification of electron microscopy samples directly from lysate. J. Struct. Biol. 215, 107999 (2023).

    Article  CAS  PubMed  Google Scholar 

  147. Patel, A. et al. Using CombiCells, a platform for titration and combinatorial display of cell surface ligands, to study T-cell antigen sensitivity modulation by accessory receptors. EMBO J. 43, 132–150 (2024).

    Article  CAS  PubMed  Google Scholar 

  148. Wang, X.-J. et al. Gene-splitting technology: a novel approach for the containment of transgene flow in Nicotiana tabacum. PLoS ONE 9, e99651 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Free, K., Nakanishi, H. & Itaka, K. Development of synthetic mRNAs encoding split cytotoxic proteins for selective cell elimination based on specific protein detection. Pharmaceutics 15, 213 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Gramespacher, J. A., Stevens, A. J., Nguyen, D. P., Chin, J. W. & Muir, T. W. Intein zymogens: conditional assembly and splicing of split inteins via targeted proteolysis. J. Am. Chem. Soc. 139, 8074–8077 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Zhao, Y. et al. SpyCLIP: an easy-to-use and high-throughput compatible CLIP platform for the characterization of protein–RNA interactions with high accuracy. Nucleic Acids Res. 47, e33 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Gu, J. et al. GoldCLIP: gel-omitted ligation-dependent CLIP. Genomics Proteomics Bioinformatics 16, 136–143 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Taniguchi, Y. & Kawakami, M. Application of HaloTag protein to covalent immobilization of recombinant proteins for single molecule force spectroscopy. Langmuir 26, 10433–10436 (2010).

    Article  CAS  PubMed  Google Scholar 

  154. Rivas-Pardo, J. A. et al. A HaloTag-TEV genetic cassette for mechanical phenotyping of proteins from tissues. Nat. Commun. 11, 2060 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Napierski, N. C. et al. A novel ‘cut and paste’ method for in situ replacement of cMyBP-C reveals a new role for cMyBP-C in the regulation of contractile oscillations. Circ. Res. 126, 737–749 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Tornabene, P. et al. Intein-mediated protein trans-splicing expands adeno-associated virus transfer capacity in the retina. Sci. Transl. Med. 11, eaav4523 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Muik, A. et al. Covalent coupling of high-affinity ligands to the surface of viral vector particles by protein trans-splicing mediates cell type-specific gene transfer. Biomaterials 144, 84–94 (2017).

    Article  CAS  PubMed  Google Scholar 

  158. Sabin, L. et al. Viral particles retargeted to skeletal muscle. US Patent WO/2023/081850 (2023).

  159. Bachmann, M. F. & Jennings, G. T. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat. Rev. Immunol. 10, 787–796 (2010).

    Article  CAS  PubMed  Google Scholar 

  160. Hills, R. A. & Howarth, M. Virus-like particles against infectious disease and cancer: guidance for the nano-architect. Curr. Opin. Biotechnol. 73, 346–354 (2022).

    Article  CAS  PubMed  Google Scholar 

  161. Wang, Q. et al. Bioconjugation by copper(I)-catalyzed azide–alkyne [3 + 2] cycloaddition. J. Am. Chem. Soc. 125, 3192–3193 (2003).

    Article  CAS  PubMed  Google Scholar 

  162. Li, X. & Xiong, Y. Application of ‘click’ chemistry in biomedical hydrogels. ACS Omega 7, 36918–36928 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. van den Berg van Saparoea, H. B., Houben, D., de Jonge, M. I., Jong, W. S. P. & Luirink, J. Display of recombinant proteins on bacterial outer membrane vesicles by using protein ligation. Appl. Environ. Microbiol. 84, e02567-17 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Brune, K. D. et al. Plug-and-Display: decoration of virus-like particles via isopeptide bonds for modular immunization. Sci. Rep. 6, 19234 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Thrane, S. et al. Bacterial superglue enables easy development of efficient virus-like particle based vaccines. J. Nanobiotechnology 14, 30 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  166. King, L. D. W. et al. Preclinical development of a stabilized RH5 virus-like particle vaccine that induces improved anti-malarial antibodies. Cell Rep. Med. 5, 101654 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Smit, M. J. et al. First-in-human use of a modular capsid virus-like vaccine platform: an open-label, non-randomised, phase 1 clinical trial of the SARS-CoV-2 vaccine ABNCoV2. Lancet Microbe 4, e140–e148 (2023). Entry of click biology into human clinical trials through modular decoration of VLPs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Baker, D. What has de novo protein design taught us about protein folding and biophysics? Protein Sci. 28, 678–683 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Du, J., Kong, Y., Wen, Y., Shen, E. & Xing, H. HUH endonuclease: a sequence-specific fusion protein tag for precise DNA–protein conjugation. Bioorg. Chem. 144, 107118 (2024).

    Article  CAS  PubMed  Google Scholar 

  170. Sacca, B. et al. Orthogonal protein decoration of DNA origami. Angew. Chem. Int. Ed. Engl. 49, 9378–9383 (2010).

    Article  CAS  PubMed  Google Scholar 

  171. Komiya, E. et al. Exploration and application of DNA-binding proteins to make a versatile DNA–protein covalent-linking patch (D-Pclip): the case of a biosensing element. J. Am. Chem. Soc. 146, 4087–4097 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Mashimo, Y., Maeda, H., Mie, M. & Kobatake, E. Construction of semisynthetic DNA–protein conjugates with Phi X174 Gene-A* protein. Bioconjug. Chem. 23, 1349–1355 (2012). Pioneering the site-specific covalent linkage of protein to DNA through engineering of a phage ligation system.

    Article  CAS  Google Scholar 

  173. Bernardinelli, G. & Högberg, B. Entirely enzymatic nanofabrication of DNA–protein conjugates. Nucleic Acids Res. 45, e160 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Lovendahl, K. N., Hayward, A. N. & Gordon, W. R. Sequence-directed covalent protein–DNA linkages in a single step using HUH-tags. J. Am. Chem. Soc. 139, 7030–7035 (2017). Establishment of a panel of efficient modules, engineered from viruses and bacteria, to empower spontaneous covalent coupling of DNA to protein.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Silverman, S. K. Catalytic DNA: scope, applications, and biochemistry of deoxyribozymes. Trends Biochem. Sci. 41, 595–609 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Sun, P., Gou, H., Che, X., Chen, G. & Feng, C. Recent advances in DNAzymes for bioimaging, biosensing and cancer therapy. Chem. Commun. 60, 10805–10821 (2024).

    Article  CAS  Google Scholar 

  177. Baum, D. A. & Silverman, S. K. Deoxyribozyme-catalyzed labeling of RNA. Angew. Chem. Int. Ed. Engl. 46, 3502–3504 (2007).

    Article  CAS  PubMed  Google Scholar 

  178. Kong, L.-Z. et al. Understanding nucleic acid sensing and its therapeutic applications. Exp. Mol. Med. 55, 2320–2331 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Hoffmann, M. D. et al. Multiparametric ___domain insertional profiling of adeno-associated virus VP1. Mol. Ther. Methods Clin. Dev. 31, 101143 (2023).

    CAS  Google Scholar 

  180. Huh, W. K. et al. Global analysis of protein localization in budding yeast. Nature 425, 686–691 (2003).

    Article  CAS  PubMed  Google Scholar 

  181. Weill, U. et al. Genome-wide SWAp-Tag yeast libraries for proteome exploration. Nat. Methods 15, 617–622 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Eiamthong, B. et al. Discovery and genetic code expansion of a polyethylene terephthalate (PET) hydrolase from the human saliva metagenome for the degradation and bio-functionalization of PET. Angew. Chem. Int. Ed. Engl. 61, e202203061 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Mican, J. et al. Exploring new galaxies: perspectives on the discovery of novel PET-degrading enzymes. Appl. Catal. B Environ. 342, 123404 (2024).

    Article  CAS  Google Scholar 

  184. Lin, Z. et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379, 1123–1130 (2023).

    Article  CAS  PubMed  Google Scholar 

  185. Lu, H. et al. Machine learning-aided engineering of hydrolases for PET depolymerization. Nature 604, 662–667 (2022).

    Article  CAS  PubMed  Google Scholar 

  186. Esvelt, K. M., Carlson, J. C. & Liu, D. R. A system for the continuous directed evolution of biomolecules. Nature 472, 499–503 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Lovelock, S. L. et al. The road to fully programmable protein catalysis. Nature 606, 49–58 (2022).

    Article  CAS  PubMed  Google Scholar 

  188. Yin, Z. et al. Significant impact of immunogen design on the diversity of antibodies generated by carbohydrate-based anticancer vaccine. ACS Chem. Biol. 10, 2364–2372 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Ortiz de Montellano, P. R. Acetylenes: cytochrome P450 oxidation and mechanism-based enzyme inactivation. Drug Metab. Rev. 51, 162–177 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Funding was provided by the Engineering and Physical Sciences Research Council (EPSRC EP/T030704/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark R. Howarth.

Ethics declarations

Competing interests

M.R.H. is an inventor on a patent on traptavidin (UK Intellectual Property Office 0919102.4), a SpyBiotech cofounder and shareholder, and an inventor on patents on spontaneous amide bond formation (UK Intellectual Property Office 2117283.8, 2104999.4, 1915905.2, 1903479.2, 1819850.7, 1706430.4, 1705750.6, 1509782.7, 1002362.0).

Peer review information

Nature Chemical Biology thanks Ali Tavassoli and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1 and Table 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Howarth, M.R. Click biology highlights the opportunities from reliable biological reactions. Nat Chem Biol 21, 991–1005 (2025). https://doi.org/10.1038/s41589-025-01944-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-025-01944-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing