Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

CD4+ T cell memory

Abstract

Specialized subpopulations of CD4+ T cells survey major histocompatibility complex class II–peptide complexes to control phagosomal infections, help B cells, regulate tissue homeostasis and repair or perform immune regulation. Memory CD4+ T cells are positioned throughout the body and not only protect the tissues from reinfection and cancer, but also participate in allergy, autoimmunity, graft rejection and chronic inflammation. Here we provide updates on our understanding of the longevity, functional heterogeneity, differentiation, plasticity, migration and human immunodeficiency virus reservoirs as well as key technological advances that are facilitating the characterization of memory CD4+ T cell biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dynamics of a CD4+ T cell response.
Fig. 2: CD4+ T cell differentiation is tailored to specific classes of immunogens.
Fig. 3: Memory CD4+ T cell heterogeneity and ontogeny.
Fig. 4: Immunosurveillance by CD4+ T cells.

Similar content being viewed by others

References

  1. Vinuesa, C. G., Linterman, M. A., Yu, D. & MacLennan, I. C. Follicular helper T cells. Annu Rev. Immunol. 34, 335–368 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Crotty, S. T follicular helper cell biology: a decade of discovery and diseases. Immunity 50, 1132–1148 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Laidlaw, B. J., Craft, J. E. & Kaech, S. M. The multifaceted role of CD4+ T cells in CD8+ T cell memory. Nat. Rev. Immunol. 16, 102–111 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Swain, S. L., McKinstry, K. K. & Strutt, T. M. Expanding roles for CD4+ T cells in immunity to viruses. Nat. Rev. Immunol. 12, 136–148 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sharma, A. & Rudra, D. Emerging functions of regulatory T cells in tissue homeostasis. Front Immunol. 9, 883 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Beura, L. K. et al. CD4+ resident memory T cells dominate immunosurveillance and orchestrate local recall responses. J. Exp. Med. 216, 1214–1229 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Glennie, N. D., Volk, S. W. & Scott, P. Skin-resident CD4+ T cells protect against Leishmania major by recruiting and activating inflammatory monocytes. PLoS Pathog. 13, e1006349 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Josefowicz, S. Z., Lu, L. F. & Rudensky, A. Y. Regulatory T cells: mechanisms of differentiation and function. Annu Rev. Immunol. 30, 531–564 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Annunziato, F., Romagnani, C. & Romagnani, S. The 3 major types of innate and adaptive cell-mediated effector immunity. J. Allergy Clin. Immunol. 135, 626–635 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Crotty, S. Follicular helper CD4 T cells (TFH). Annu Rev. Immunol. 29, 621–663 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Medzhitov, R. Recognition of microorganisms and activation of the immune response. Nature 449, 819–826 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Ahmed, R. & Gray, D. Immunological memory and protective immunity: understanding their relation. Science 272, 54–60 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Hammarlund, E. et al. Duration of antiviral immunity after smallpox vaccination. Nat. Med. 9, 1131–1137 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Walker, J. M. & Slifka, M. K. Longevity of T cell memory following acute viral infection. Adv. Exp. Med. Biol. 684, 96–107 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Naniche, D. et al. Decrease in measles virus-specific CD4+ T cell memory in vaccinated subjects. J. Infect. Dis. 190, 1387–1395 (2004).

    Article  PubMed  Google Scholar 

  16. Jokinen, S., Osterlund, P., Julkunen, I. & Davidkin, I. Cellular immunity to mumps virus in young adults 21 years after measles-mumps-rubella vaccination. J. Infect. Dis. 196, 861–867 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Terahara, K. et al. SARS-CoV-2-specific CD4+ T cell longevity correlates with TH17-like phenotype. iScience 25, 104959 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Goel, R. R. et al. mRNA vaccines induce durable immune memory to SARS-CoV-2 and variants of concern. Science 374, abm0829 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Badolato-Correa, J. et al. Differential longevity of memory CD4 and CD8 T Cells in a cohort of the mothers with a history of ZIKV infection and their children. Front Immunol. 12, 610456 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ng, O. W. et al. Memory T cell responses targeting the SARS coronavirus persist up to 11 years post-infection. Vaccine 34, 2008–2014 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Homann, D., Teyton, L. & Oldstone, M. B. Differential regulation of antiviral T cell immunity results in stable CD8+ but declining CD4+ T cell memory. Nat. Med. 7, 913–919 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Fedele, G., Cassone, A. & Ausiello, C. M. T cell immune responses to Bordetella pertussis infection and vaccination. Pathog. Dis. 73, ftv051 (2015).

    Article  PubMed  Google Scholar 

  23. Hirst, G. K. The quantitative determination of influenza virus and antibodies by means of red cell agglutination. J. Exp. Med. 75, 49–64 (1942).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Czerkinsky, C. et al. Reverse ELISPOT assay for clonal analysis of cytokine production. I. Enumeration of gamma-interferon-secreting cells. J. Immunol. Methods 110, 29–36 (1988).

    Article  CAS  PubMed  Google Scholar 

  25. Dan, J. M. et al. A cytokine-independent approach to identify antigen-specific human germinal center T follicular helper cells and rare antigen-specific CD4+ T cells in blood. J. Immunol. 197, 983–993 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Grifoni, A. et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell 181, 1489–1501 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Moon, J. J. et al. Tracking epitope-specific T cells. Nat. Protoc. 4, 565–581 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kunzli, M. et al. Long-lived T follicular helper cells retain plasticity and help sustain humoral immunity. Sci. Immunol. 5, eaay5552 (2020).

    Article  PubMed  Google Scholar 

  29. Tubo, N. J. et al. Single naive CD4+ T cells from a diverse repertoire produce different effector cell types during infection. Cell 153, 785–796 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Swarnalekha, N. et al. T resident helper cells promote humoral responses in the lung. Sci. Immunol. 6, eabb6808 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Crawford, F., Kozono, H., White, J., Marrack, P. & Kappler, J. Detection of antigen-specific T cells with multivalent soluble class II MHC covalent peptide complexes. Immunity 8, 675–682 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Altman, J. D. et al. Phenotypic analysis of antigen-specific T lymphocytes. Science 274, 94–96 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Martinez, R. J., Andargachew, R., Martinez, H. A. & Evavold, B. D. Low-affinity CD4+ T cells are major responders in the primary immune response. Nat. Commun. 7, 13848 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Huang, J. et al. Detection, phenotyping, and quantification of antigen-specific T cells using a peptide–MHC dodecamer. Proc. Natl Acad. Sci. USA 113, E1890–E1897 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dileepan, T. et al. MHC class II tetramers engineered for enhanced binding to CD4 improve detection of antigen-specific T cells. Nat. Biotechnol. 39, 943–948 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Pogorelyy, M. V. et al. Resolving SARS-CoV-2 CD4+ T cell specificity via reverse epitope discovery. Cell Rep. Med 3, 100697 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Choi, Y. S. et al. ICOS receptor instructs T follicular helper cell versus effector cell differentiation via induction of the transcriptional repressor Bcl6. Immunity 34, 932–946 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Eisenbarth, S. C. et al. CD4+ T cells that help B cells—a proposal for uniform nomenclature. Trends Immunol. 42, 658–669 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Oh, J. E. et al. Intranasal priming induces local lung-resident B cell populations that secrete protective mucosal antiviral IgA. Sci. Immunol. 6, eabj5129 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Avery, D. T., Bryant, V. L., Ma, C. S., de Waal Malefyt, R. & Tangye, S. G. IL-21-induced isotype switching to IgG and IgA by human naive B cells is differentially regulated by IL-4. J. Immunol. 181, 1767–1779 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Keck, S. et al. Antigen affinity and antigen dose exert distinct influences on CD4 T cell differentiation. Proc. Natl Acad. Sci. USA 111, 14852–14857 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kunzli, M., Reuther, P., Pinschewer, D. D. & King, C. G. Opposing effects of T cell receptor signal strength on CD4 T cells responding to acute versus chronic viral infection. Elife 10, e61869 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fazilleau, N., McHeyzer-Williams, L. J., Rosen, H. & McHeyzer-Williams, M. G. The function of follicular helper T cells is regulated by the strength of T cell antigen receptor binding. Nat. Immunol. 10, 375–384 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kotov, D. I. et al. TCR affinity biases TH cell differentiation by regulating CD25, Eef1e1, and Gbp2. J. Immunol. 202, 2535–2545 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Snook, J. P., Kim, C. & Williams, M. A. TCR signal strength controls the differentiation of CD4+ effector and memory T cells. Sci. Immunol. 3, eaas9103 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  46. DiToro, D. et al. Differential IL-2 expression defines developmental fates of follicular versus nonfollicular helper T cells. Science 361, eaao2933 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Krishnamoorthy, V. et al. The IRF4 gene regulatory module functions as a read–write integrator to dynamically coordinate T helper cell fate. Immunity 47, 481–497 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ploquin, M. J., Eksmond, U. & Kassiotis, G. B cells and TCR avidity determine distinct functions of CD4+ T cells in retroviral infection. J. Immunol. 187, 3321–3330 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Vanguri, V., Govern, C. C., Smith, R. & Huseby, E. S. Viral antigen density and confinement time regulate the reactivity pattern of CD4 T cell responses to vaccinia virus infection. Proc. Natl Acad. Sci. USA 110, 288–293 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Govern, C. C., Paczosa, M. K., Chakraborty, A. K. & Huseby, E. S. Fast on-rates allow short dwell time ligands to activate T cells. Proc. Natl Acad. Sci. USA 107, 8724–8729 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Constant, S., Pfeiffer, C., Woodard, A., Pasqualini, T. & Bottomly, K. Extent of T cell receptor ligation can determine the functional differentiation of naive CD4+ T cells. J. Exp. Med. 182, 1591–1596 (1995).

    Article  CAS  PubMed  Google Scholar 

  52. Hosken, N. A., Shibuya, K., Heath, A. W., Murphy, K. M. & O’Garra, A. The effect of antigen dose on CD4+ T helper cell phenotype development in a T cell receptor-alpha beta-transgenic model. J. Exp. Med. 182, 1579–1584 (1995).

    Article  CAS  PubMed  Google Scholar 

  53. Ruterbusch, M., Pruner, K. B., Shehata, L. & Pepper, M. In vivo CD4+ T cell differentiation and function: revisiting the Th1/Th2 paradigm. Annu. Rev. Immunol. 38, 705–725 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. Arsenio, J., Metz, P. J. & Chang, J. T. Asymmetric cell division in T lymphocyte fate diversification. Trends Immunol. 36, 670–683 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Osum, K. C. & Jenkins, M. K. Toward a general model of CD4+ T cell subset specification and memory cell formation. Immunity 56, 475–484 (2023).

    Article  CAS  PubMed  Google Scholar 

  56. Swain, S. L., Hu, H. & Huston, G. Class II-independent generation of CD4 memory T cells from effectors. Science 286, 1381–1383 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Pepper, M., Pagan, A. J., Igyarto, B. Z., Taylor, J. J. & Jenkins, M. K. Opposing signals from the Bcl6 transcription factor and the interleukin-2 receptor generate T helper 1 central and effector memory cells. Immunity 35, 583–595 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pepper, M. et al. Different routes of bacterial infection induce long-lived TH1 memory cells and short-lived TH17 cells. Nat. Immunol. 11, 83–89 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Kryczek, I. et al. Human TH17 cells are long-lived effector memory cells. Sci. Transl. Med. 3, 104ra100 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Muranski, P. et al. TH17 cells are long lived and retain a stem cell-like molecular signature. Immunity 35, 972–985 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mojtabavi, N., Dekan, G., Stingl, G. & Epstein, M. M. Long-lived TH2 memory in experimental allergic asthma. J. Immunol. 169, 4788–4796 (2002).

    Article  PubMed  Google Scholar 

  63. McGeachy, M. J. TH17 memory cells: live long and proliferate. J. Leukoc. Biol. 94, 921–926 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Nakayama, T. et al. TH2 cells in health and disease. Annu. Rev. Immunol. 35, 53–84 (2017).

    Article  CAS  PubMed  Google Scholar 

  65. Luthje, K. et al. The development and fate of follicular helper T cells defined by an IL-21 reporter mouse. Nat. Immunol. 13, 491–498 (2012).

    Article  PubMed  Google Scholar 

  66. Hale, J. S. et al. Distinct memory CD4+ T cells with commitment to T follicular helper- and T helper 1-cell lineages are generated after acute viral infection. Immunity 38, 805–817 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Marshall, H. D. et al. Differential expression of Ly6C and T-bet distinguish effector and memory TH1 CD4+ cell properties during viral infection. Immunity 35, 633–646 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Andreatta, M. et al. A CD4+ T cell reference map delineates subtype-specific adaptation during acute and chronic viral infections. Elife 11, e76339 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ciucci, T. et al. The emergence and functional fitness of memory CD4+ T cells require the transcription factor Thpok. Immunity 50, 91–105 e104 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. MacLeod, M. K. et al. Memory CD4 T cells that express CXCR5 provide accelerated help to B cells. J. Immunol. 186, 2889–2896 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Pepper, M. & Jenkins, M. K. Origins of CD4+ effector and central memory T cells. Nat. Immunol. 12, 467–471 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nguyen, Q. P., Deng, T. Z., Witherden, D. A. & Goldrath, A. W. Origins of CD4+ circulating and tissue-resident memory T cells. Immunology 157, 3–12 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ciucci, T. et al. Dependence on Bcl6 and Blimp1 drive distinct differentiation of murine memory and follicular helper CD4+ T cells. J. Exp. Med. 219, e20202343 (2022).

    Article  CAS  PubMed  Google Scholar 

  74. Robinson, A. M. et al. Evolution of antigen-specific follicular helper T cell transcription from effector function to memory. Sci. Immunol. 7, eabm2084 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Krueger, P. D., Osum, K. C. & Jenkins, M. K. CD4+ memory T cell formation during type 1 immune responses. Cold Spring Harb. Perspect. Biol. 13, a038141 (2021).

    Article  CAS  PubMed  Google Scholar 

  76. Iyer, S. S. et al. Identification of novel markers for mouse CD4+ T follicular helper cells. Eur. J. Immunol. 43, 3219–3232 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kunzli, M. et al. Route of self-amplifying mRNA vaccination modulates the establishment of pulmonary resident memory CD8 and CD4 T cells. Sci. Immunol. 7, eadd3075 (2022).

    Article  CAS  PubMed  Google Scholar 

  78. Lee, S. K. et al. B cell priming for extrafollicular antibody responses requires Bcl-6 expression by T cells. J. Exp. Med. 208, 1377–1388 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hondowicz, B. D. et al. Interleukin-2-dependent allergen-specific tissue-resident memory cells drive asthma. Immunity 44, 155–166 (2016).

    Article  CAS  PubMed  Google Scholar 

  80. Choi, J. et al. Bcl-6 is the nexus transcription factor of T follicular helper cells via repressor-of-repressor circuits. Nat. Immunol. 21, 777–789 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Johnston, R. J. et al. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science 325, 1006–1010 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Oestreich, K. J., Mohn, S. E. & Weinmann, A. S. Molecular mechanisms that control the expression and activity of Bcl-6 in TH1 cells to regulate flexibility with a TFH-like gene profile. Nat. Immunol. 13, 405–411 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Liu, X. et al. Bcl6 expression specifies the T follicular helper cell program in vivo. J. Exp. Med. 209, 1841–1852 (2012). S1841-1824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Morita, R. et al. Human blood CXCR5+CD4+ T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion. Immunity 34, 108–121 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Locci, M. et al. Human circulating PD-1+CXCR3CXCR5+ memory TFH cells are highly functional and correlate with broadly neutralizing HIV antibody responses. Immunity 39, 758–769 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Slifka, M. K., Matloubian, M. & Ahmed, R. Bone marrow is a major site of long-term antibody production after acute viral infection. J. Virol. 69, 1895–1902 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ise, W. et al. Memory B cells contribute to rapid Bcl6 expression by memory follicular helper T cells. Proc. Natl Acad. Sci. USA 111, 11792–11797 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Asrir, A., Aloulou, M., Gador, M., Perals, C. & Fazilleau, N. Interconnected subsets of memory follicular helper T cells have different effector functions. Nat. Commun. 8, 847 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Moran, I. et al. Memory B cells are reactivated in subcapsular proliferative foci of lymph nodes. Nat. Commun. 9, 3372 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Suan, D. et al. T follicular helper cells have distinct modes of migration and molecular signatures in naive and memory immune responses. Immunity 42, 704–718 (2015).

    Article  CAS  PubMed  Google Scholar 

  91. de Carvalho, R. V. H. et al. Clonal replacement sustains long-lived germinal centers primed by respiratory viruses. Cell 186, 131–146 (2023).

    Article  PubMed  Google Scholar 

  92. Chappert, P. et al. Human anti-smallpox long-lived memory B cells are defined by dynamic interactions in the splenic niche and long-lasting germinal center imprinting. Immunity 55, 1872–1890 (2022).

    Article  CAS  PubMed  Google Scholar 

  93. Messi, M. et al. Memory and flexibility of cytokine gene expression as separable properties of human TH1 and TH2 lymphocytes. Nat. Immunol. 4, 78–86 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Wei, G. et al. Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity 30, 155–167 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Dileepan, T. et al. Robust antigen specific TH17 T cell response to group A Streptococcus is dependent on IL-6 and intranasal route of infection. PLoS Pathog. 7, e1002252 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Cooper, A. M. et al. Disseminated tuberculosis in interferon gamma gene-disrupted mice. J. Exp. Med. 178, 2243–2247 (1993).

    Article  CAS  PubMed  Google Scholar 

  97. Scriba, T. J. et al. Dose-finding study of the novel tuberculosis vaccine, MVA85A, in healthy BCG-vaccinated infants. J. Infect. Dis. 203, 1832–1843 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Tameris, M. D. et al. Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, placebo-controlled phase 2b trial. Lancet 381, 1021–1028 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Moguche, A. O. et al. ICOS and Bcl6-dependent pathways maintain a CD4 T cell population with memory-like properties during tuberculosis. J. Exp. Med. 212, 715–728 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Reinhardt, R. L., Khoruts, A., Merica, R., Zell, T. & Jenkins, M. K. Visualizing the generation of memory CD4 T cells in the whole body. Nature 410, 101–105 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Gebhardt, T. et al. Different patterns of peripheral migration by memory CD4+ and CD8+ T cells. Nature 477, 216–219 (2011).

    Article  CAS  PubMed  Google Scholar 

  102. Park, C. O. et al. Staged development of long-lived T cell receptor alphabeta TH17 resident memory T cell population to Candida albicans after skin infection. J. Allergy Clin. Immunol. 142, 647–662 (2018).

    Article  CAS  PubMed  Google Scholar 

  103. Bromley, S. K., Yan, S., Tomura, M., Kanagawa, O. & Luster, A. D. Recirculating memory T cells are a unique subset of CD4+ T cells with a distinct phenotype and migratory pattern. J. Immunol. 190, 970–976 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Watanabe, R. et al. Human skin is protected by four functionally and phenotypically discrete populations of resident and recirculating memory T cells. Sci. Transl. Med. 7, 279ra239 (2015).

    Article  Google Scholar 

  105. Glennie, N. D. et al. Skin-resident memory CD4+ T cells enhance protection against Leishmania major infection. J. Exp. Med. 212, 1405–1414 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Collins, N. et al. Skin CD4+ memory T cells exhibit combined cluster-mediated retention and equilibration with the circulation. Nat. Commun. 7, 11514 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kumar, B. V. et al. Human tissue-resident memory T cells are defined by core transcriptional and functional signatures in lymphoid and mucosal sites. Cell Rep. 20, 2921–2934 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. O’Hara, J. M. et al. Generation of protective pneumococcal-specific nasal resident memory CD4+ T cells via parenteral immunization. Mucosal Immunol. 13, 172–182 (2020).

    Article  PubMed  Google Scholar 

  109. Teijaro, J. R. et al. Cutting edge: tissue-retentive lung memory CD4 T cells mediate optimal protection to respiratory virus infection. J. Immunol. 187, 5510–5514 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. Siracusa, F. et al. Nonfollicular reactivation of bone marrow resident memory CD4 T cells in immune clusters of the bone marrow. Proc. Natl Acad. Sci. USA 115, 1334–1339 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zens, K. D., Chen, J. K. & Farber, D. L. Vaccine-generated lung tissue-resident memory T cells provide heterosubtypic protection to influenza infection. JCI Insight 1, e85832 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Smith, N. M. et al. Regionally compartmentalized resident memory T cells mediate naturally acquired protection against pneumococcal pneumonia. Mucosal Immunol. 11, 220–235 (2018).

    Article  CAS  PubMed  Google Scholar 

  113. Amezcua Vesely, M. C. et al. Effector TH17 cells give rise to long-lived TRM cells that are essential for an immediate response against bacterial infection. Cell 178, 1176–1188 (2019).

    Article  CAS  PubMed  Google Scholar 

  114. Kabat, A. M. et al. Resident TH2 cells orchestrate adipose tissue remodeling at a site adjacent to infection. Sci. Immunol. 7, eadd3263 (2022).

    Article  CAS  PubMed  Google Scholar 

  115. Braverman, J. et al. Staphylococcus aureus specific lung resident memory CD4+ Th1 cells attenuate the severity of influenza virus induced secondary bacterial pneumonia. Mucosal Immunol. 15, 783–796 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Iijima, N. & Iwasaki, A. T cell memory. A local macrophage chemokine network sustains protective tissue-resident memory CD4 T cells. Science 346, 93–98 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kirchner, F. R. & LeibundGut-Landmann, S. Tissue-resident memory Th17 cells maintain stable fungal commensalism in the oral mucosa. Mucosal Immunol. 14, 455–467 (2021).

    Article  CAS  PubMed  Google Scholar 

  118. Stary, G. et al. VACCINES. a mucosal vaccine against Chlamydia trachomatis generates two waves of protective memory T cells. Science 348, aaa8205 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Allen, A. C. et al. Sustained protective immunity against Bordetella pertussis nasal colonization by intranasal immunization with a vaccine-adjuvant combination that induces IL-17-secreting TRM cells. Mucosal Immunol. 11, 1763–1776 (2018).

    Article  CAS  PubMed  Google Scholar 

  120. Wilk, M. M. et al. Lung CD4 tissue-resident memory T cells mediate adaptive immunity induced by previous infection of mice with Bordetella pertussis. J. Immunol. 199, 233–243 (2017).

    Article  CAS  PubMed  Google Scholar 

  121. Rahimi, R. A., Nepal, K., Cetinbas, M., Sadreyev, R. I. & Luster, A. D. Distinct functions of tissue-resident and circulating memory Th2 cells in allergic airway disease. J. Exp. Med. 217, e20190865 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Zundler, S. et al. Hobit- and Blimp-1-driven CD4+ tissue-resident memory T cells control chronic intestinal inflammation. Nat. Immunol. 20, 288–300 (2019).

    Article  CAS  PubMed  Google Scholar 

  123. Krebs, C. F. et al. Pathogen-induced tissue-resident memory TH17 (TRM17) cells amplify autoimmune kidney disease. Sci. Immunol. 5, eaba4163 (2020).

    Article  CAS  PubMed  Google Scholar 

  124. Bartolome-Casado, R. et al. CD4+ T cells persist for years in the human small intestine and display a TH1 cytokine profile. Mucosal Immunol. 14, 402–410 (2021).

    Article  CAS  PubMed  Google Scholar 

  125. Snyder, M. E. et al. Generation and persistence of human tissue-resident memory T cells in lung transplantation. Sci. Immunol. 4, eaav5581 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Pallett, L. J. et al. Longevity and replenishment of human liver-resident memory T cells and mononuclear phagocytes. J. Exp. Med. 217, e20200050 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Steinert, E. M. et al. Quantifying memory CD8 T cells reveals regionalization of immunosurveillance. Cell 161, 737–749 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ziegler, S. F., Ramsdell, F. & Alderson, M. R. The activation antigen CD69. Stem Cells 12, 456–465 (1994).

    Article  CAS  PubMed  Google Scholar 

  129. Beura, L. K. et al. T cells in nonlymphoid tissues give rise to lymph-node-resident memory T cells. Immunity 48, 327–338 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Poon, M. M. L. et al. Tissue adaptation and clonal segregation of human memory T cells in barrier sites. Nat. Immunol. 24, 309–319 (2023).

    Article  CAS  PubMed  Google Scholar 

  131. Fonseca, R. et al. Runx3 drives a CD8+ T cell tissue residency program that is absent in CD4+ T cells. Nat. Immunol. 23, 1236–1245 (2022).

    Article  CAS  PubMed  Google Scholar 

  132. Cunningham, A. C. et al. Constitutive expression of MHC and adhesion molecules by alveolar epithelial cells (type II pneumocytes) isolated from human lung and comparison with immunocytochemical findings. J. Cell Sci. 107, 443–449 (1994).

    Article  CAS  PubMed  Google Scholar 

  133. Biton, M. et al. T helper cell cytokines modulate intestinal stem cell renewal and differentiation. Cell 175, 1307–1320 e1322 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Tamoutounour, S. et al. Keratinocyte-intrinsic MHCII expression controls microbiota-induced TH1 cell responses. Proc. Natl Acad. Sci. USA 116, 23643–23652 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Shenoy, A. T. et al. Antigen presentation by lung epithelial cells directs CD4+ TRM cell function and regulates barrier immunity. Nat. Commun. 12, 5834 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Shenoy, A. T. et al. Lung CD4+ resident memory T cells remodel epithelial responses to accelerate neutrophil recruitment during pneumonia. Mucosal Immunol. 13, 334–343 (2020).

    Article  CAS  PubMed  Google Scholar 

  137. Son, Y. M. et al. Tissue-resident CD4+ T helper cells assist the development of protective respiratory B and CD8+ T cell memory responses. Sci. Immunol. 6, eabb6852 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Morimoto, Y. et al. Amphiregulin-producing pathogenic memory T helper 2 cells instruct eosinophils to secrete osteopontin and facilitate airway fibrosis. Immunity 49, 134–150 (2018).

    Article  CAS  PubMed  Google Scholar 

  139. Tan, H. X. et al. Inducible bronchus-associated lymphoid tissues (iBALT) serve as sites of B cell selection and maturation following influenza infection in mice. Front Immunol. 10, 611 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Poon, M. M. L. et al. SARS-CoV-2 infection generates tissue-localized immunological memory in humans. Sci. Immunol. 6, eabl9105 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Kutteh, W. H., Prince, S. J. & Mestecky, J. Tissue origins of human polymeric and monomeric IgA. J. Immunol. 128, 990–995 (1982).

    Article  CAS  PubMed  Google Scholar 

  142. Naderi, W., Schreiner, D. & King, C. G. T cell–B cell collaboration in the lung. Curr. Opin. Immunol. 81, 102284 (2023).

    Article  CAS  PubMed  Google Scholar 

  143. Wellford, S. A. et al. Mucosal plasma cells are required to protect the upper airway and brain from infection. Immunity 55, 2118–2134 (2022).

    Article  CAS  PubMed  Google Scholar 

  144. Rosato, P. C., Wijeyesinghe, S., Stolley, J. M. & Masopust, D. Integrating resident memory into T cell differentiation models. Curr. Opin. Immunol. 63, 35–42 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Wijeyesinghe, S. et al. Expansible residence decentralizes immune homeostasis. Nature 592, 457–462 (2021).

    Article  CAS  PubMed  Google Scholar 

  146. Gray, J. I. & Farber, D. L. Tissue-resident immune cells in humans. Annu Rev. Immunol. 40, 195–220 (2022).

    Article  PubMed  Google Scholar 

  147. Sathaliyawala, T. et al. Distribution and compartmentalization of human circulating and tissue-resident memory T cell subsets. Immunity 38, 187–197 (2013).

    Article  CAS  PubMed  Google Scholar 

  148. Ugur, M., Schulz, O., Menon, M. B., Krueger, A. & Pabst, O. Resident CD4+ T cells accumulate in lymphoid organs after prolonged antigen exposure. Nat. Commun. 5, 4821 (2014).

    Article  CAS  PubMed  Google Scholar 

  149. Marriott, C. L., Dutton, E. E., Tomura, M. & Withers, D. R. Retention of Ag-specific memory CD4+ T cells in the draining lymph node indicates lymphoid tissue resident memory populations. Eur. J. Immunol. 47, 860–871 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Durand, A. et al. Profiling the lymphoid-resident T cell pool reveals modulation by age and microbiota. Nat. Commun. 9, 68 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Murray, A. J., Kwon, K. J., Farber, D. L. & Siliciano, R. F. The latent reservoir for HIV-1: how immunologic memory and clonal expansion contribute to HIV-1 persistence. J. Immunol. 197, 407–417 (2016).

    Article  CAS  PubMed  Google Scholar 

  152. Lorenzo-Redondo, R. et al. Persistent HIV-1 replication maintains the tissue reservoir during therapy. Nature 530, 51–56 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Yukl, S. A. et al. The distribution of HIV DNA and RNA in cell subsets differs in gut and blood of HIV-positive patients on ART: implications for viral persistence. J. Infect. Dis. 208, 1212–1220 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Cantero-Perez, J. et al. Resident memory T cells are a cellular reservoir for HIV in the cervical mucosa. Nat. Commun. 10, 4739 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Costiniuk, C. T. et al. HIV persistence in mucosal CD4+ T cells within the lungs of adults receiving long-term suppressive antiretroviral therapy. AIDS 32, 2279–2289 (2018).

    Article  CAS  PubMed  Google Scholar 

  156. Joag, V. R. et al. Identification of preferential CD4+ T cell targets for HIV infection in the cervix. Mucosal Immunol. 9, 1–12 (2016).

    Article  CAS  PubMed  Google Scholar 

  157. Whitney, J. B. et al. Rapid seeding of the viral reservoir prior to SIV viraemia in rhesus monkeys. Nature 512, 74–77 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Whitney, J. B. et al. Prevention of SIVmac251 reservoir seeding in rhesus monkeys by early antiretroviral therapy. Nat. Commun. 9, 5429 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Devanathan, A. S. & Cottrell, M. L. Pharmacology of HIV cure: site of action. Clin. Pharmacol. Ther. 109, 841–855 (2021).

    Article  PubMed  Google Scholar 

  160. Rosenblum, M. D., Way, S. S. & Abbas, A. K. Regulatory T cell memory. Nat. Rev. Immunol. 16, 90–101 (2016).

    Article  CAS  PubMed  Google Scholar 

  161. Khantakova, J. N., Bulygin, A. S. & Sennikov, S. V. The regulatory T cell memory phenotype: what we know. Cells 11, 1687 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Liu, T., Soong, L., Liu, G., Konig, R. & Chopra, A. K. CD44 expression positively correlates with Foxp3 expression and suppressive function of CD4+ Treg cells. Biol. Direct 4, 40 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Rosenblum, M. D. et al. Response to self antigen imprints regulatory memory in tissues. Nature 480, 538–542 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Rowe, J. H., Ertelt, J. M., Xin, L. & Way, S. S. Pregnancy imprints regulatory memory that sustains anergy to fetal antigen. Nature 490, 102–106 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Brincks, E. L. et al. Antigen-specific memory regulatory CD4+Foxp3+ T cells control memory responses to influenza virus infection. J. Immunol. 190, 3438–3446 (2013).

    Article  CAS  PubMed  Google Scholar 

  166. Sanchez, A. M., Zhu, J., Huang, X. & Yang, Y. The development and function of memory regulatory T cells after acute viral infections. J. Immunol. 189, 2805–2814 (2012).

    Article  CAS  PubMed  Google Scholar 

  167. van der Veeken, J. et al. Memory of inflammation in regulatory T cells. Cell 166, 977–990 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Crawford, A. et al. Molecular and transcriptional basis of CD4+ T cell dysfunction during chronic infection. Immunity 40, 289–302 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Fahey, L. M. et al. Viral persistence redirects CD4 T cell differentiation toward T follicular helper cells. J. Exp. Med. 208, 987–999 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Snell, L. M. et al. Overcoming CD4 TH1 cell fate restrictions to sustain antiviral CD8 T cells and control persistent virus infection. Cell Rep. 16, 3286–3296 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Xia, Y. et al. BCL6-dependent TCF-1+ progenitor cells maintain effector and helper CD4+ T cell responses to persistent antigen. Immunity 55, 1200–1215 (2022).

    Article  CAS  PubMed  Google Scholar 

  172. Morgan, J. et al. Classical CD4 T cells as the cornerstone of antimycobacterial immunity. Immunol. Rev. 301, 10–29 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Tubo, N. J. & Jenkins, M. K. CD4+ T cells: guardians of the phagosome. Clin. Microbiol. Rev. 27, 200–213 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Speiser, D. E., Chijioke, O., Schaeuble, K. & Munz, C. CD4+ T cells in cancer. Nat. Cancer 4, 317–329 (2023).

  175. Gutierrez-Melo, N. & Baumjohann, D. T follicular helper cells in cancer. Trends Cancer 9, 309–325 (2023).

  176. Oja, A. E., van Lier, R. A. W. & Hombrink, P. Two sides of the same coin: protective versus pathogenic CD4+ resident memory T cells. Sci. Immunol. 7, eabf9393 (2022).

    Article  CAS  PubMed  Google Scholar 

  177. Raphael, I., Joern, R. R. & Forsthuber, T. G. Memory CD4+ T cells in immunity and autoimmune diseases. Cells 9, 531 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Koehli, S., Naeher, D., Galati-Fournier, V., Zehn, D. & Palmer, E. Optimal T cell receptor affinity for inducing autoimmunity. Proc. Natl Acad. Sci. USA 111, 17248–17253 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Yi, J. et al. Antigen-specific depletion of CD4+ T cells by CAR T cells reveals distinct roles of higher- and lower-affinity TCRs during autoimmunity. Sci. Immunol. 7, eabo0777 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swiss National Science Foundation (P2B-SP3-200187 to M.K.) and the National Institutes of Health grants (R01CA238439, R01AI146032, R01AI084913 and R01AI150600 to D.M.).

Author information

Authors and Affiliations

Authors

Contributions

M.K. and D.M. performed the literature research and wrote the manuscript.

Corresponding author

Correspondence to David Masopust.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Immunology thanks Annette Oxenius and the other, anonymous, reviewer for their contribution to the peer review of this manuscript. Primary Handling Editor: Ioana Visan, in collaboration with the Nature Immunology team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Künzli, M., Masopust, D. CD4+ T cell memory. Nat Immunol 24, 903–914 (2023). https://doi.org/10.1038/s41590-023-01510-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-023-01510-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing