Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inflammasome protein scaffolds the DNA damage complex during tumor development

Abstract

Inflammasome sensors activate cellular signaling machineries to drive inflammation and cell death processes. Inflammasomes also control the development of certain diseases independently of canonical functions. Here, we show that the inflammasome protein NLR family CARD ___domain-containing protein 4 (NLRC4) attenuated the development of tumors in the Apcmin/+ mouse model. This response was independent of inflammasome signaling by NLRP3, NLRP6, NLR family apoptosis inhibitory proteins, absent in melanoma 2, apoptosis-associated speck-like protein containing a caspase recruitment ___domain, caspase-1 and caspase-11. NLRC4 interacted with the DNA-damage-sensing ataxia telangiectasia and Rad3-related (ATR)–ATR-interacting protein (ATRIP)–Ewing tumor-associated antigen 1 (ETAA1) complex to promote the recruitment of the checkpoint adapter protein claspin, licensing the activation of the kinase checkpoint kinase-1 (CHK1). Genotoxicity-induced activation of the NLRC4–ATR–ATRIP–ETAA1 complex drove the tumor-suppressing DNA damage response and CHK1 activation, and further attenuated the accumulation of DNA damage. These findings demonstrate a noninflammatory function of an inflammasome protein in promoting the DNA damage response and mediating protection against cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: NLRC4 attenuates tumor development in Apcmin/+ mice.
Fig. 2: NLRC4 attenuates the development of tumors independently of the inflammasome pathway.
Fig. 3: The small intestine of Apcmin/+ and Apcmin/+ Nlrc4−/− mice have similar levels of apoptosis and inflammatory responses during tumor development.
Fig. 4: NLRC4 reduces DNA damage accumulation during tumor development.
Fig. 5: NLRC4 interacts with ATR to promote the tumor-suppressive DNA damage response.
Fig. 6: NLRC4 promotes the recruitment of claspin to the ATR–ATRIP complex during tumor development.

Similar content being viewed by others

Data availability

All data are available in the main figures, Supplementary Information, extended data figures or source data. The raw microbiota (available from https://doi.org/10.5281/zenodo.10278738)124 and phosphoproteomics (available from https://doi.org/10.5281/zenodo.10278713)125 data have been deposited to Zenodo. Source data are provided with this paper.

References

  1. Barnett, K. C., Li, S., Liang, K. & Ting, J. P. A 360 degrees view of the inflammasome: mechanisms of activation, cell death, and diseases. Cell 186, 2288–2312 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Broz, P. & Dixit, V. M. Inflammasomes: mechanism of assembly, regulation and signalling. Nat. Rev. Immunol. 16, 407–420 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Lamkanfi, M. & Dixit, V. M. In Retrospect: the inflammasome turns 15. Nature 548, 534–535 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Humphries, F. & Fitzgerald, K. A. Igniting the firestorm: the inflammasome in autoinflammatory syndromes. J. Allergy Clin. Immunol. 148, 1470–1472 (2021).

    Article  PubMed  Google Scholar 

  5. Bauernfeind, F. & Hornung, V. Of inflammasomes and pathogens—sensing of microbes by the inflammasome. EMBO Mol. Med. 5, 814–826 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Heneka, M. T., McManus, R. M. & Latz, E. Inflammasome signalling in brain function and neurodegenerative disease. Nat. Rev. Neurosci. 19, 610–621 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Evavold, C. L. & Kagan, J. C. Inflammasomes: threat-assessment organelles of the innate immune system. Immunity 51, 609–624 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. de Zoete, M. R., Palm, N. W., Zhu, S. & Flavell, R. A. Inflammasomes. Cold Spring Harb. Perspect. Biol. 6, a016287 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Man, S. M., Karki, R. & Kanneganti, T. D. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol. Rev. 277, 61–75 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhao, Y. & Shao, F. Diverse mechanisms for inflammasome sensing of cytosolic bacteria and bacterial virulence. Curr. Opin. Microbiol. 29, 37–42 (2016).

    Article  PubMed  Google Scholar 

  11. Xu, J. & Núñez, G. The NLRP3 inflammasome: activation and regulation. Trends Biochem. Sci. 48, 331–344 (2023).

    Article  CAS  PubMed  Google Scholar 

  12. Sharma, B. R. & Kanneganti, T.-D. NLRP3 inflammasome in cancer and metabolic diseases. Nat. Immunol. 22, 550–559 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Miao, E. A. et al. Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1β via Ipaf. Nat. Immunol. 7, 569–575 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Miao, E. A., Ernst, R. K., Dors, M., Mao, D. P. & Aderem, A. Pseudomonas aeruginosa activates caspase 1 through Ipaf. Proc. Natl Acad. Sci. USA 105, 2562–2567 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Franchi, L. et al. Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1β in salmonella-infected macrophages. Nat. Immunol. 7, 576–582 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Kofoed, E. M. & Vance, R. E. Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 477, 592–595 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhao, Y. et al. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477, 596–600 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Bürckstümmer, T. et al. An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat. Immunol. 10, 266–272 (2009).

    Article  PubMed  Google Scholar 

  19. Hornung, V. et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458, 514–518 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Roberts, T. L. et al. HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science 323, 1057–1060 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Fernandes-Alnemri, T., Yu, J. W., Datta, P., Wu, J. & Alnemri, E. S. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458, 509–513 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cerretti, D. P. et al. Molecular cloning of the interleukin-1β converting enzyme. Science 256, 97–100 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. Thornberry, N. A. et al. A novel heterodimeric cysteine protease is required for interleukin-1β processing in monocytes. Nature 356, 768–774 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Ghayur, T. et al. Caspase-1 processes IFN-γ-inducing factor and regulates LPS-induced IFN-γ production. Nature 386, 619–623 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Gu, Y. et al. Activation of interferon-γ inducing factor mediated by interleukin-1β converting enzyme. Science 275, 206–209 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Shi, J. et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526, 660–665 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Kayagaki, N. et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526, 666–671 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Shi, X. et al. Recognition and maturation of IL-18 by caspase-4 noncanonical inflammasome. Nature 624, 442–450 (2023).

    Article  CAS  PubMed  Google Scholar 

  29. Devant, P. et al. Structural insights into cytokine cleavage by inflammatory caspase-4. Nature 624, 451–459 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Heilig, R. et al. The Gasdermin-D pore acts as a conduit for IL-1β secretion in mice. Eur. J. Immunol. 48, 584–592 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Evavold, C. L. et al. The pore-forming protein gasdermin D regulates interleukin-1 secretion from living macrophages. Immunity 48, 35–44 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Xia, S. et al. Gasdermin D pore structure reveals preferential release of mature interleukin-1. Nature 593, 607–611 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chan, A. H. & Schroder, K. Inflammasome signaling and regulation of interleukin-1 family cytokines. J. Exp. Med. 217, e20190314 (2020).

    Article  PubMed  Google Scholar 

  34. Zengeler, K. E. & Lukens, J. R. Innate immunity at the crossroads of healthy brain maturation and neurodevelopmental disorders. Nat. Rev. Immunol. 21, 454–468 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pandey, A., Shen, C., Feng, S. & Man, S. M. Cell biology of inflammasome activation. Trends Cell Biol. 31, 924–939 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Man, S. M. et al. Salmonella infection induces recruitment of Caspase-8 to the inflammasome to modulate IL-1β production. J. Immunol. 191, 5239–5246 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Gurung, P. et al. FADD and caspase-8 mediate priming and activation of the canonical and noncanonical Nlrp3 inflammasomes. J. Immunol. 192, 1835–1846 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Vince, J. E. et al. The mitochondrial apoptotic effectors BAX/BAK activate caspase-3 and -7 to trigger NLRP3 inflammasome and caspase-8 driven IL-1β activation. Cell Rep. 25, 2339–2353 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Doerflinger, M. et al. Flexible usage and interconnectivity of diverse cell death pathways protect against intracellular infection. Immunity 53, 533–547 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Roncaioli, J. L. et al. A hierarchy of cell death pathways confers layered resistance to shigellosis in mice. eLife 12, e83639 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Christgen, S. et al. Identification of the PANoptosome: a molecular platform triggering pyroptosis, apoptosis, and necroptosis (PANoptosis). Front. Cell. Infect. Microbiol. 10, 237 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lee, S. et al. AIM2 forms a complex with pyrin and ZBP1 to drive PANoptosis and host defence. Nature 597, 415–419 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sundaram, B. et al. NLRP12-PANoptosome activates PANoptosis and pathology in response to heme and PAMPs. Cell 186, 2783–2801 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Moser, A. R., Pitot, H. C. & Dove, W. F. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 247, 322–324 (1990).

    Article  CAS  PubMed  Google Scholar 

  45. Su, L. K. et al. Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science 256, 668–670 (1992).

    Article  CAS  PubMed  Google Scholar 

  46. Canna, S. W. et al. An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat. Genet. 46, 1140–1146 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Romberg, N. et al. Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation. Nat. Genet. 46, 1135–1139 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kitamura, A., Sasaki, Y., Abe, T., Kano, H. & Yasutomo, K. An inherited mutation in NLRC4 causes autoinflammation in human and mice. J. Exp. Med. 211, 2385–2396 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Moghaddas, F. et al. Autoinflammatory mutation in NLRC4 reveals a leucine-rich repeat (LRR)-LRR oligomerization interface. J. Allergy Clin. Immunol. 142, 1956–1967 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Steiner, A. et al. Recessive NLRC4-autoinflammatory disease reveals an ulcerative colitis locus. J. Clin. Immunol. 42, 325–335 (2022).

    Article  CAS  PubMed  Google Scholar 

  51. Nichols, R. D., von Moltke, J. & Vance, R. E. NAIP/NLRC4 inflammasome activation in MRP8+ cells is sufficient to cause systemic inflammatory disease. Nat. Commun. 8, 2209 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lee, S. H. et al. ERK activation drives intestinal tumorigenesis in Apcmin/+ mice. Nat. Med. 16, 665–670 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang, L. et al. Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization. Science 350, 404–409 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hu, Z. et al. Structural and biochemical basis for induced self-propagation of NLRC4. Science 350, 399–404 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Paidimuddala, B. et al. Mechanism of NAIP-NLRC4 inflammasome activation revealed by cryo-EM structure of unliganded NAIP5. Nat. Struct. Mol. Biol. 30, 159–166 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Paidimuddala, B., Cao, J. & Zhang, L. Structural basis for flagellin-induced NAIP5 activation. Sci. Adv. 9, eadi8539 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ayres, J. S., Trinidad, N. J. & Vance, R. E. Lethal inflammasome activation by a multidrug-resistant pathobiont upon antibiotic disruption of the microbiota. Nat. Med. 18, 799–806 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rauch, I. et al. NAIP proteins are required for cytosolic detection of specific bacterial ligands in vivo. J. Exp. Med. 213, 657–665 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhao, Y. et al. Genetic functions of the NAIP family of inflammasome receptors for bacterial ligands in mice. J. Exp. Med. 213, 647–656 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mitchell, P. S. et al. NAIP–NLRC4-deficient mice are susceptible to shigellosis. eLife 9, e59022 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Allam, R. et al. Epithelial NAIPs protect against colonic tumorigenesis. J. Exp. Med. 212, 369–383 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hu, B. et al. Inflammation-induced tumorigenesis in the colon is regulated by caspase-1 and NLRC4. Proc. Natl Acad. Sci. USA 107, 21635–21640 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kolb, R. et al. Obesity-associated NLRC4 inflammasome activation drives breast cancer progression. Nat. Commun. 7, 13007 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ohashi, K. et al. NOD-like receptor C4 inflammasome regulates the growth of colon cancer liver metastasis in NAFLD. Hepatology 70, 1582–1599 (2019).

    Article  CAS  PubMed  Google Scholar 

  65. Kumar, Y., Radha, V. & Swarup, G. Interaction with Sug1 enables Ipaf ubiquitination leading to caspase 8 activation and cell death. Biochem. J. 427, 91–104 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Man, S. M. et al. Inflammasome activation causes dual recruitment of NLRC4 and NLRP3 to the same macromolecular complex. Proc. Natl Acad. Sci. USA 111, 7403–7408 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rauch, I. et al. NAIP-NLRC4 inflammasomes coordinate intestinal epithelial cell expulsion with eicosanoid and IL-18 release via activation of caspase-1 and -8. Immunity 46, 649–659 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lee, B. L. et al. ASC- and caspase-8-dependent apoptotic pathway diverges from the NLRC4 inflammasome in macrophages. Sci. Rep. 8, 3788 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Kay, C., Wang, R., Kirkby, M. & Man, S. M. Molecular mechanisms activating the NAIP‐NLRC4 inflammasome: implications in infectious disease, autoinflammation, and cancer. Immunol. Rev. 297, 67–82 (2020).

    Article  CAS  PubMed  Google Scholar 

  70. Man, S. M. & Jenkins, B. J. Context-dependent functions of pattern recognition receptors in cancer. Nat. Rev. Cancer 22, 397–413 (2022).

    Article  CAS  PubMed  Google Scholar 

  71. MacDonald, B. T., Tamai, K. & He, X. Wnt/β-catenin signaling: components, mechanisms, and diseases. Dev. Cell 17, 9–26 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Stamos, J. L. & Weis, W. I. The β-catenin destruction complex. Cold Spring Harb. Perspect. Biol. 5, a007898 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Shih, I. M. et al. Top-down morphogenesis of colorectal tumors. Proc. Natl Acad. Sci. USA 98, 2640–2645 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mah, L., El-Osta, A. & Karagiannis, T. γH2AX: a sensitive molecular marker of DNA damage and repair. Leukemia 24, 679–686 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Pandey, A. et al. Ku70 senses cytosolic DNA and assembles a tumor-suppressive signalosome. Sci. Adv. 10, eadh3409 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Montecucco, A. & Biamonti, G. Cellular response to etoposide treatment. Cancer Lett. 252, 9–18 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Giglia-Mari, G., Zotter, A. & Vermeulen, W. DNA damage response. Cold Spring Harb. Perspect. Biol. 3, a000745 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Zhao, H. & Piwnica-Worms, H. ATR-mediated checkpoint pathways regulate phosphorylation and activation of human Chk1. Mol. Cell. Biol. 21, 4129–4139 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Jiang, K. et al. Regulation of Chk1 includes chromatin association and 14-3-3 binding following phosphorylation on Ser-345. J. Biol. Chem. 278, 25207–25217 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Karlsson-Rosenthal, C. & Millar, J. B. A. Cdc25: mechanisms of checkpoint inhibition and recovery. Trends Cell Biol. 16, 285–292 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Busino, L., Chiesa, M., Draetta, G. F. & Donzelli, M. Cdc25A phosphatase: combinatorial phosphorylation, ubiquitylation and proteolysis. Oncogene 23, 2050–2056 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Blackford, A. N. & Jackson, S. P. ATM, ATR, and DNA-PK: the trinity at the heart of the DNA damage response. Mol. Cell 66, 801–817 (2017).

    Article  CAS  PubMed  Google Scholar 

  83. Wang, C. et al. Inducing and exploiting vulnerabilities for the treatment of liver cancer. Nature 574, 268–272 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Poyet, J. L. et al. Identification of Ipaf, a human caspase-1-activating protein related to Apaf-1. J. Biol. Chem. 276, 28309–28313 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Damiano, J. S., Stehlik, C., Pio, F., Godzik, A. & Reed, J. C. CLAN, a novel human CED-4-like gene. Genomics 75, 77–83 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Lecona, E. & Fernandez-Capetillo, O. Targeting ATR in cancer. Nat. Rev. Cancer 18, 586–595 (2018).

    Article  CAS  PubMed  Google Scholar 

  87. Lin, S.-Y., Liang, Y. & Li, K. Multiple roles of BRIT1/MCPH1 in DNA damage response, DNA repair, and cancer suppression. Yonsei Med. J. 51, 295–301 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kumagai, A. & Dunphy, W. G. Claspin, a novel protein required for the activation of Chk1 during a DNA replication checkpoint response in Xenopus egg extracts. Mol. Cell 6, 839–849 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Aghabozorgi, A. S. et al. Role of adenomatous polyposis coli (APC) gene mutations in the pathogenesis of colorectal cancer; current status and perspectives. Biochimie 157, 64–71 (2019).

    Article  CAS  PubMed  Google Scholar 

  90. Becker, W. R. et al. Single-cell analyses define a continuum of cell state and composition changes in the malignant transformation of polyps to colorectal cancer. Nat. Genet. 54, 985–995 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lonsdale, J. et al. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).

    Article  CAS  Google Scholar 

  92. Tang, Z., Kang, B., Li, C., Chen, T. & Zhang, Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 47, W556–W560 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Janowski, A. M. et al. NLRC4 suppresses melanoma tumor progression independently of inflammasome activation. J. Clin. Invest. 126, 3917–3928 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Tubbs, A. & Nussenzweig, A. Endogenous DNA damage as a source of genomic instability in cancer. Cell 168, 644–656 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Negrini, S., Gorgoulis, V. G. & Halazonetis, T. D. Genomic instability—an evolving hallmark of cancer. Mol. Cell Biol. 11, 220–228 (2010).

    CAS  Google Scholar 

  96. Bartek, J., Bartkova, J. & Lukas, J. DNA damage signalling guards against activated oncogenes and tumour progression. Oncogene 26, 7773–7779 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Fang, Y. et al. ATR functions as a gene dosage‐dependent tumor suppressor on a mismatch repair‐deficient background. EMBO J. 23, 3164–3174 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Liu, Q. et al. Chk1 is an essential kinase that is regulated by Atr and required for the G2/M DNA damage checkpoint. Genes Dev. 14, 1448–1459 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Greenow, K. R., Clarke, A. R., Williams, G. T. & Jones, R. Wnt-driven intestinal tumourigenesis is suppressed by Chk1 deficiency but enhanced by conditional haploinsufficiency. Oncogene 33, 4089–4096 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Cortez, D., Guntuku, S., Qin, J. & Elledge, S. J. ATR and ATRIP: partners in checkpoint signaling. Science 294, 1713–1716 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Zhang, R. et al. NLRC4 promotes the cGAS‐STING signaling pathway by facilitating CBL‐mediated K63‐linked polyubiquitination of TBK1. J. Med. Virol. 95, e29013 (2023).

    Article  CAS  PubMed  Google Scholar 

  102. Hu, B. et al. The DNA-sensing AIM2 inflammasome controls radiation-induced cell death and tissue injury. Science 354, 765–768 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lammert, C. R. et al. AIM2 inflammasome surveillance of DNA damage shapes neurodevelopment. Nature 580, 647–652 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Bodnar-Wachtel, M. et al. Inflammasome-independent NLRP3 function enforces ATM activity in response to genotoxic stress. Life Sci. Alliance 6, e202201494 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Jones, J. W. et al. Absent in melanoma 2 is required for innate immune recognition of Francisella tularensis. Proc. Natl Acad. Sci. USA 107, 9771–9776 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mariathasan, S. et al. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430, 213–218 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Kuida, K. et al. Altered cytokine export and apoptosis in mice deficient in interleukin-1β converting enzyme. Science 267, 2000–2003 (1995).

    Article  CAS  PubMed  Google Scholar 

  108. Wang, S. et al. Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell 92, 501–509 (1998).

    Article  CAS  PubMed  Google Scholar 

  109. Kovarova, M. et al. NLRP1-dependent pyroptosis leads to acute lung injury and morbidity in mice. J. Immunol. 189, 2006–2016 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Zheng, D. et al. Epithelial Nlrp10 inflammasome mediates protection against intestinal autoinflammation. Nat. Immunol. 24, 585–594 (2023).

    Article  CAS  PubMed  Google Scholar 

  111. Hu, Q. et al. Oncogenic lncRNA downregulates cancer cell antigen presentation and intrinsic tumor suppression. Nat. Immunol. 20, 835–851 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Medhavy, A. et al. A TNIP1-driven systemic autoimmune disorder with elevated IgG4. Nat. Immunol. 25, 1678–1691 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Karki, R. et al. NLRC3 is an inhibitory sensor of PI3K-mTOR pathways in cancer. Nature 540, 583–587 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Man, S. M. et al. Critical role for the DNA sensor AIM2 in stem cell proliferation and cancer. Cell 162, 45–58 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Jing, W. et al. Clostridium septicum α-toxin activates the NLRP3 inflammasome by engaging GPI-anchored proteins. Sci. Immunol. 7, eabm1803 (2022).

    Article  CAS  PubMed  Google Scholar 

  116. Fox, D. et al. Bacillus cereus non-haemolytic enterotoxin activates the NLRP3 inflammasome. Nat. Commun. 11, 760 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Luu, L. D. W., Zhong, L., Kaur, S., Raftery, M. J. & Lan, R. Comparative phosphoproteomics of classical Bordetellae elucidates the potential role of serine, threonine and tyrosine phosphorylation in Bordetella biology and virulence. Front. Cell. Infect. Microbiol. 11, 660280 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 11, 2301–2319 (2016).

    Article  CAS  PubMed  Google Scholar 

  119. Mathur, A. et al. A multicomponent toxin from Bacillus cereus incites inflammation and shapes host outcome via the NLRP3 inflammasome. Nat. Microbiol. 4, 362–374 (2019).

    Article  CAS  PubMed  Google Scholar 

  120. Feng, S. et al. Pathogen-selective killing by guanylate-binding proteins as a molecular mechanism leading to inflammasome signaling. Nat. Commun. 13, 4395 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl Acad. Sci. USA 108, 4516–4522 (2011).

    Article  CAS  PubMed  Google Scholar 

  122. Deshpande, N. P., Riordan, S. M., Castaño-Rodríguez, N., Wilkins, M. R. & Kaakoush, N. O. Signatures within the esophageal microbiome are associated with host genetics, age, and disease. Microbiome 6, 227 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Yang, L. & Chen, J. A comprehensive evaluation of microbial differential abundance analysis methods: current status and potential solutions. Microbiome 10, 130 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kaakoush, N. O. & Man, S. M. Fecal microbiota profiling of NLRC4 KO mice and their WT littermates. Zenodo https://zenodo.org/records/10278738 (2023).

  125. Kaakoush, N. O. & Man, S. M. Phosphoproteomics of NLRC4 KO mice and wild-type littermates. Zenodo https://doi.org/10.5281/zenodo.10278713 (2023).

Download references

Acknowledgements

We thank the facilities and scientific and technical assistance of Microscopy Australia at the Centre for Advanced Microscopy (ANU), which is funded by the University and the Federal Government. We thank the National Collaborative Research Infrastructure Strategy (NCRIS) via Phenomics Australia. We thank the South Australian Genomics Centre (SAGC), which is supported by NCRIS via BioPlatforms Australia and by the SAGC partner institutes. We thank the facilities and scientific and technical assistance of the Cytometry, Histology and Spatial Multiomics facility of the John Curtin School of Medical Research, ANU. We thank G. Burgio (ANU) for generating the Nlrp6−/− mice, R. E. Vance and E. Turcotte (University of California) for providing the WT and NLRC4−/− THP-1 cell lines, and J.-W. Yu (Yonsei University College of Medicine) for providing the anti-NLRC4 antibody. We thank members of the Man laboratory for their comments and suggestions; the National Health and Medical Research Council of Australia under project grant no. APP1146864, an ideas grant no. APP2002686 and an investigator grant no. 2026910 (S.M.M.); a CSL Centenary Fellowship (S.M.M.); a John Curtin School of Medical Research PhD Scholarship (C.S.); the Gretel and Gordon Bootes Medical Research Foundation (C.S.); a Cancer Council ACT Research Grant (A.M.); a Gastroenterological Society of Australia GESA Mostyn Family Grant (D.E.T.); and an Australian Research Council Centre of Excellence for the Mathematical Analysis of Cellular Systems grant no. CE230100001 (L.L., H.Y., J.W.).

Author information

Authors and Affiliations

Authors

Contributions

C.S. and S.M.M. conceptualized the study. C.S., A.P., D.E.T., L.L., H.Y., C.N., Y.H., R.S. and N.O.K. devised the methodology. C.S., A.P., D.E.T., A.M., L.L., H.Y., N.K.A., C.N., W.J., S.F., Y.H., A.Z., Max Kirkby, Melan Kurera, J.Z., S.V., C.L., R.S., U.S. and N.O.K. carried out the investigation. C.S., A.P., D.E.T., A.M., L.L., H.Y., C.L., R.S., J.J.-L.W., R.N., J.W., L.Z., N.O.K. and S.M.M. carried out the formal analysis. S.M.M. acquired the funding. C.S. and S.M.M. managed the project. S.M.M. supervised the study. C.S. and S.M.M. wrote the original manuscript draft. All authors reviewed and edited the manuscript draft.

Corresponding author

Correspondence to Si Ming Man.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Immunology thanks Tyler Curiel, Khashayarsha Khazaie and Igor Brodsky for their contribution to the peer review of this work. Primary Handling Editor: L. A. Dempsey in collaboration with the Nature Immunology editorial team. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 The small intestine of Apcmin/+ and Apcmin/+ Nlrc4–/– mice have a similar profile of microbiome.

a, Body weight of 20-week-old Apcmin/+ (n = 12) and Apcmin/+ Nlrc4–/– mice (n = 12), and small intestine and colon length of 20-week-old Apcmin/+ (n = 13) and Apcmin/+ Nlrc4–/– mice (n = 14). b, Species richness, species evenness and Shannon’s diversity of the microbiome in the small intestine of 20-week-old Apcmin/+ (n = 10) and Apcmin/+ Nlrc4–/– mice (n = 14). c, Principal coordinate analysis and differential abundance analysis for the microbiome in the small intestine of 20-week-old Apcmin/+ (n = 10) and Apcmin/+ Nlrc4–/– mice (n = 14). ANOSIM (analysis of similarity, R = −0.011, P = 0.52). q indicates an adjusted p-value. d, Number and size of tumors in the colon of 20-week-old Apcmin/+ (n = 13) and Apcmin/+ Nlrc4–/– mice (n = 14). Each symbol represents one individual mouse (ad). Data represent mean ± SEM; two-tailed t-test (a, b and d).

Source data

Extended Data Fig. 2 AIM2, caspase-11, NLRP3 or NLRP6 does not substantially affect tumor development in the small intestine and colon of Apcmin/+ mice.

ad, Number and size of tumors in the small intestine and colon of 20-week-old Apcmin/+ (n = 13) and Apcmin/+ Aim2–/– mice (n = 15) (a); Apcmin/+ (n = 14) and Apcmin/+ Casp11–/– mice (n = 17) (b); Apcmin/+ (n = 11) and Apcmin/+ Nlrp3–/– mice (n = 13) (c); Apcmin/+ (n = 14) and Apcmin/+ Nlrp6–/– mice (n = 12) (d). Each symbol represents one individual mouse (ad). Data represent mean ± SEM; two-tailed t-test (ad).

Source data

Extended Data Fig. 3 The small intestine of Apcmin/+ and Apcmin/+ Nlrc4–/– mice have a similar tumor burden at an earlier age.

a, Densitometric quantification of Casp-1 p20 and GSDMD p30 in the small intestine of Apcmin/+ (n = 6) and Apcmin/+ Nlrc4–/– (n = 6) mice in Fig. 2c. b, Number and size of tumors in the small intestine and colon of 10-week-old Apcmin/+ (n = 15) and Apcmin/+ Nlrc4–/– mice (n = 13). c,d, Number and size of tumors in the small intestine of 20-week-old Apcmin/+ (n = 14) and Apcmin/+ Asc–/– mice (n = 12) (c); Apcmin/+ (n = 12) and Apcmin/+ Casp1–/– mice (n = 12) (d). e,f, Number and size of tumors in the colon of 20-week-old Apcmin/+ (n = 14) and Apcmin/+ Asc–/– mice (n = 12) (e); Apcmin/+ (n = 12) and Apcmin/+ Casp1–/– mice (n = 12) (f). Each symbol represents one individual mouse (af). Data represent mean ± SEM; two-tailed t-test (af).

Source data

Extended Data Fig. 4 The small intestine of Apcmin/+ and Apcmin/+ Nlrc4–/– mice have similar activation levels of the β-catenin pathway during tumor development.

a, Densitometric quantification of β-catenin in Fig. 4a (cytosolic β-catenin was normalized to GAPDH; nuclear β-catenin was normalized to Lamin B1). b,c, Quantification (b) and representative images (c) of nuclear β-catenin in the small intestine of 10-week-old Apcmin/+ (n = 5) and Apcmin/+ Nlrc4–/– mice (n = 5) (each symbol represents one microscopy image). Scale bar for all images, 50 μm. d, Relative gene expression of Axin2, Lgr5 and Tcf7 in healthy tissues from the small intestine of 10-week-old Apc+/+ mice, and in tumor tissues from the small intestine of 10-week-old Apcmin/+ mice. (normalized to Gapdh). e, Relative gene expression of Axin2, Lgr5 and Tcf7 in the small intestine of 10-week-old Apcmin/+ and Apcmin/+ Nlrc4–/– mice (normalized to Gapdh). f, Levels of differential phosphorylated proteins (Supplementary Table 1, P < 0.05) in the small intestine of 20-week-old Apcmin/+ (n = 5) and Apcmin/+ Nlrc4–/– mice (n = 5). g,h, Representative images (g) and quantification (h) of γH2AX in Apc+/+ and Apc+/+ Nlrc4–/– BMDMs treated with a vehicle control or 50 µM etoposide for 20 h (each symbol represents one microscopy image). Scale bar, 40 μm. Image capture and quantification were performed in a blinded manner (b and h). Each symbol or lane represents one individual mouse (a, d, e and f). Data are pooled from multiple Apcmin/+ (n = 5) and Apcmin/+ Nlrc4–/– (n = 5) mice (b); Apc+/+ (n = 5) and Apcmin/+ (n = 4) mice (d); Apcmin/+ (n = 8) and Apcmin/+ Nlrc4–/– (n = 8) mice (e), or from two independent experiments (h). Data represent mean ± SEM; two-tailed t-test (a, b, d, e and h).

Source data

Extended Data Fig. 5 NLRC4 promotes the DNA damage response triggered by various activators.

a,b, Immunoblot analysis (a) and densitometric quantification (b) of p-BRCA1 S1524, p-p53 S15 and p-CHK2 T68 in the small intestine of 10-week-old Apcmin/+ (n = 6) and Apcmin/+ Nlrc4–/– (n = 6) mice (normalized to β-actin in Fig. 5a). c, Immunoblot analysis of NLRC4, p-CHK1 S345, CHK1, and β-actin in Apc+/+ and Apc+/+ Nlrc4–/– BMDMs treated with 50 µM etoposide for the indicated time. d, Immunoblot analysis of NLRC4, p-CHK1 S345, CHK1, and β-actin in Apc+/+ and Apc+/+ Nlrc4–/– BMDMs either left untreated or treated with 6 Gy ionizing radiation, followed by incubation for the indicated time. e, Immunoblot analysis of p-CHK1 S345, CHK1, and β-actin in WT and NLRC4–/– THP-1 cells treated with 10 mM hydrogen peroxide (H2O2) for the indicated time. fh, Densitometric quantification of p-CHK1 S345 against CHK1 in the blots (f is related to d); (g is related to Fig. 5d); (h is related to e). i,j, Immunoblot analysis (i) and densitometric quantification (j) of p-CHK1 S345, CHK1, p-CDC25A S124, CDC25A, and β-actin in the small intestine of 10-week-old Apc+/+ (n = 6) and Apc+/+ Nlrc4–/– (n = 6) mice. Data represent one of three independent experiments (c–h). Each symbol or lane represents one individual mouse (a, b, i and j). Data represent mean ± SEM; two-tailed t-test (b and j).

Source data

Extended Data Fig. 6 NLRC4 does not affect the production of reactive oxygen species during the DNA damage response.

a, Immunoblot analysis of GFP-NLRC4, ATR, and β-actin following immunoprecipitation of control IgG or anti-ATR antibody in cell lysates of GFP-NLRC4-expressing HEK239T cells. b, Immunoblot analysis of NLRC4, p-CHK1 S345, CHK1 and β-actin in Apcmin/+ and Apcmin/+ Nlrc4–/– small intestinal organoids pre-treated with a vehicle control or 1 µM AZD6738 for 1 h, followed by 50 µM etoposide treatment for the indicated time. AZD6738-treated organoids were maintained under the condition of AZD6738 inhibition during etoposide treatment. c, Analysis of ROS levels in live Apc+/+ and Apc+/+ Nlrc4–/– BMDMs treated with phosphate-buffered saline (PBS), 50 µM etoposide, or 10 mM hydrogen peroxide (H2O2) for the indicated time. d,e, Immunoblot analysis (d) and densitometric quantification (e) of NLRC4, p-CHK1 S345, CHK1, and β-actin in BMDMs pre-treated with a vehicle control or 500 µM N-acetyl cysteine (NAC) for 20 h, followed by 50 µM etoposide treatment for the indicated time. f,g, Immunoblot analysis (f) and densitometric quantification (g) of p-ERK1/2 T202/Y204 and ERK1/2 in BMDMs pre-treated with a vehicle control or 500 µM N-acetyl cysteine (NAC) for 20 h, followed by 1 µg/ml lipopolysaccharide (LPS) treatment for the indicated time. NAC-treated cells were maintained under the condition of NAC inhibition during etoposide treatment (d–g). Data represent one of three independent experiments (a–g). Data represent mean ± SEM; Two-way ANOVA with Holm-Sidak’s multiple comparisons test (c).

Source data

Extended Data Fig. 7 The HEAT and FATC domains of ATR are required for NLRC4-ATR interaction.

a, Schematic representation of the full-length NLRC4 protein and truncated mutants. b, Densitometric quantification of p-CHK1 S345 against CHK1 in the blots of Fig. 6e. c, Schematic representation of the full-length ATR protein and truncated mutants. d, Immunoblot analysis of GFP-NLRC4, β-actin, and the full-length V5-ATR protein or V5-ATR lacking the HEAT ___domain (ΔHEAT), FAT ___domain (ΔFAT), PIKK ___domain (ΔPIKK), PRD ___domain (ΔPRD) or FATC ___domain (ΔFATC) following immunoprecipitation using a control IgG or anti-GFP antibody from the cell lysates of V5-ATR (WT, ΔHEAT, ΔFAT, ΔPIKK, ΔPRD or ΔFATC)- and GFP-NLRC4-expressing HEK239T cells. e, Densitometric quantification of Claspin in the small intestine lysates of 10-week-old Apcmin/+ (n = 6) and Apcmin/+ Nlrc4–/– (n = 6) mice, related to Fig. 6h, i. Data represent one of three independent experiments (d). Data represent mean ± SEM; two-tailed t-test (e).

Source data

Extended Data Fig. 8 The gene expression of human NLRC4 is reduced across multiple cell types during the malignant transformation of colorectal cancer.

a, Dot plot representation of human NLRC4 expression across different cell types during malignant transformation of colorectal cancer (CRC). Data were obtained from GSE201349.

Extended Data Fig. 9 The expression of the human NLRC4 gene is associated with the expression of the genes encoding the DNA damage response in the human small intestine.

a, Pearson correlation analysis of the gene expression between NLRC4 and ATR, ATRIP, CLSPN, CHEK1, and CDC25A in the human small intestine. b, KEGG pathway enrichment analysis of genes showing the highest Pearson correlation coefficients with NLRC4 in the human small intestine. Data were obtained from GTEx (Small Intestine – Terminal Ileum) (a, and b). Two-tailed Pearson correlation coefficient test (a).

Extended Data Fig. 10 Model for the NLRC4-ATR pathway in reducing DNA damage and attenuating tumor development.

Left, in response to genomic stress, such as DNA damage assault, NLRC4 interacts with the ATR-ATRIP-ETAA1 complex to promote the recruitment of Claspin, leading to CHK1 activation. Activated CHK1 phosphorylates CDC25A, resulting in the degradation of CDC25A, and triggers the DNA damage response. Sufficient DNA damage response provides a protective response against tumor development. Right, the lack of NLRC4 hinders the recruitment of Claspin to the ATR-ATRIP-ETAA1 complex, leading to impaired DNA damage response. This defect causes DNA damage accumulation, leading to genomic instability and increased tumor development. Figures are drawn using PowerPoint.

Supplementary information

Supplementary Information

Supplementary Tables 1–4.

Reporting Summary

Peer Review File

Supplementary Tables 1–4

Supplementary Table 1: Phospho-MS data_(NLRC4 WT VS KO);Supplementary Table 2: Top NLRC4-related genes in the human small intestine; Supplementary Table 3: NLRP6 knockout mouse strain information; Supplementary Table 4: Antibodies and primers.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 2

Unprocessed immunoblots.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 3

Unprocessed immunoblots.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 4

Unprocessed immunoblots.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 5

Unprocessed immunoblots.

Source Data Fig. 6

Statistical source data.

Source Data Fig. 6

Unprocessed immunoblots.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 5

Unprocessed immunoblots.

Source Data Extended Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 6

Unprocessed immunoblots.

Source Data Extended Data Fig. 7

Statistical source data.

Source Data Extended Data Fig. 7

Unprocessed immunoblots.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, C., Pandey, A., Enosi Tuipulotu, D. et al. Inflammasome protein scaffolds the DNA damage complex during tumor development. Nat Immunol 25, 2085–2096 (2024). https://doi.org/10.1038/s41590-024-01988-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-024-01988-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing