Table 1 Optimization methods from minimize
From: SciPy 1.0: fundamental algorithms for scientific computing in Python
Nelder-Mead | Powell | COBYLA | CG | BFGS | L-BFGS-G | SLSQP | TNC | Newton-CG | dogleg | trust-ncg | trust-exact | trust-Krylov | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Version added | 0.6* | 0.6* | 0.6* | 0.6* | 0.6* | 0.6* | 0.9 | 0.6* | 0.6* | 0.13 | 0.13 | 0.19 | 1.0 |
Wrapper | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||||
First derivatives | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||
Second derivatives | ~ | ~ | ~ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||
Iterative Hessian factorization | ✓ | ✓ | ✓ | ✓ | |||||||||
Local convergence | L | S | L | S | S* | S* | Q | S* | Q | S* | |||
Global convergence | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||
Trust region | Neither | LS | TR | LS | LS | LS | LS | LS | LS | TR | TR | TR | TR |
Bound constraints | ✓ | ✓ | ✓ | ✓ | |||||||||
Equality constraints | ✓ | ||||||||||||
Inequality constraints | ✓ | ✓ | |||||||||||
References |