Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cell Painting: a decade of discovery and innovation in cellular imaging

An Author Correction to this article was published on 12 December 2024

This article has been updated

Abstract

Modern quantitative image analysis techniques have enabled high-throughput, high-content imaging experiments. Image-based profiling leverages the rich information in images to identify similarities or differences among biological samples, rather than measuring a few features, as in high-content screening. Here, we review a decade of advancements and applications of Cell Painting, a microscopy-based cell-labeling assay aiming to capture a cell’s state, introduced in 2013 to optimize and standardize image-based profiling. Cell Painting’s ability to capture cellular responses to various perturbations has expanded owing to improvements in the protocol, adaptations for different perturbations, and enhanced methodologies for feature extraction, quality control, and batch-effect correction. Cell Painting is a versatile tool that has been used in various applications, alone or with other -omics data, to decipher the mechanism of action of a compound, its toxicity profile, and other biological effects. Future advances will likely involve computational and experimental techniques, new publicly available datasets, and integration with other high-content data types.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Morphological profiling using Cell Painting.
Fig. 2: Overview of studies included in this systematic review and publication trends.
Fig. 3: Analysis of datasets and leading institutions in studies using Cell Painting datasets.
Fig. 4: Summary of convolutional neural network analyses of Cell Painting images, one type of deep-learning network that can be used to extract image features.

Similar content being viewed by others

Change history

References

  1. Swinney, D. C. & Anthony, J. How were new medicines discovered? Nat. Rev. Drug Discov. 10, 507–519 (2011).

    CAS  PubMed  Google Scholar 

  2. Lin, A. et al. Off-target toxicity is a common mechanism of action of cancer drugs undergoing clinical trials. Sci. Transl. Med. 11, eaaw8412 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Moffat, J. G., Vincent, F., Lee, J. A., Eder, J. & Prunotto, M. Opportunities and challenges in phenotypic drug discovery: an industry perspective. Nat. Rev. Drug Discov. 16, 531–543 (2017).

    CAS  PubMed  Google Scholar 

  4. Perlman, Z. E. et al. Multidimensional drug profiling by automated microscopy. Science 306, 1194–1198 (2004).

    CAS  PubMed  Google Scholar 

  5. Schulze, C. J. et al. ‘Function-first’ lead discovery: mode of action profiling of natural product libraries using image-based screening. Chem. Biol. 20, 285 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Feng, Y., Mitchison, T. J., Bender, A., Young, D. W. & Tallarico, J. A. Multi-parameter phenotypic profiling: using cellular effects to characterize small-molecule compounds. Nat. Rev. Drug Discov. 8, 567–578 (2009).

    CAS  PubMed  Google Scholar 

  7. Woehrmann, M. H. et al. Large-scale cytological profiling for functional analysis of bioactive compounds. Mol. Biosyst. 9, 2604–2617 (2013).

    CAS  PubMed  Google Scholar 

  8. Gustafsdottir, S. M. et al. Multiplex cytological profiling assay to measure diverse cellular states. PLoS ONE 8, e80999 (2013).

    PubMed  PubMed Central  Google Scholar 

  9. Stirling, D. R. et al. CellProfiler 4: improvements in speed, utility and usability. BMC Bioinf. 22, 1–11 (2021).

    Google Scholar 

  10. Bray, M. A. et al. Cell Painting, a high-content image-based assay for morphological profiling using multiplexed fluorescent dyes. Nat. Protoc. 11, 1757–1774 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Cimini, B. A. et al. Optimizing the Cell Painting assay for image-based profiling. Nat. Protoc. 18, 1981–2013 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Tromans-Coia, C. et al. Assessing the performance of the Cell Painting assay across different imaging systems. Cytom. Part A 103, 915–926 (2023).

    Google Scholar 

  13. Chandrasekaran, S. N. et al. Three million images and morphological profiles of cells treated with matched chemical and genetic perturbations. Nat. Methods 21, 1114–1121 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Chandrasekaran, S. N. et al. JUMP Cell Painting dataset: morphological impact of 136,000 chemical and genetic perturbations. Preprint at bioRxiv https://doi.org/10.1101/2023.03.23.534023 (2023).

  15. Heinrich, L., Kumbier, K., Li, L., Altschuler, S. J. & Wu, L. F. Selection of optimal cell lines for high-content phenotypic screening. ACS Chem. Biol. 18, 679–685 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Willis, C., Nyffeler, J. & Harrill, J. Phenotypic profiling of reference chemicals across biologically diverse cell types using the Cell Painting assay. SLAS Discov. 25, 755–769 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Laber, S. et al. Discovering cellular programs of intrinsic and extrinsic drivers of metabolic traits using LipocyteProfiler. Cell Genomics 3, 100346 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Rietdijk, J. et al. A phenomics approach for antiviral drug discovery. BMC Biol. 19, 156 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Singh, S. et al. Morphological profiles of RNAi-induced gene knockdown are highly reproducible but dominated by seed effects. PLoS One 10, e0131370 (2015).

    PubMed  PubMed Central  Google Scholar 

  20. Caicedo, J. C. et al. Cell Painting predicts impact of lung cancer variants. Mol. Biol. Cell 33, ar49 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Way, G. P. et al. Predicting cell health phenotypes using image-based morphology profiling. Mol. Biol. Cell 32, 995–1005 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Dahlin, J. L. et al. Reference compounds for characterizing cellular injury in high-content cellular morphology assays. Nat. Commun. 14, 1364 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Smith, K. et al. Phenotypic image analysis software tools for exploring and understanding big image data from cell-based assays. Cell Syst. 6, 636–653 (2018).

    CAS  PubMed  Google Scholar 

  24. Moshkov, N. et al. Learning representations for image-based profiling of perturbations. Nat. Commun. 15, 1594 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Caron, M. et al. Emerging Properties in Self-Supervised Vision Transformers. In Proc.IEEE/CVF International Conference on Computer Vision 9630–9640 (IEEE, 2021)

  26. He, K. et al. Masked autoencoders are scalable vision learners. in 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 15979–15988 (IEEE, 2022).

  27. Kim, V., Adaloglou, N., Osterland, M., Morelli, F. M. & Zapata, P. A. M. Self-supervision advances morphological profiling by unlocking powerful image representations. Preprint at bioRxiv https://doi.org/10.1101/2023.04.28.538691 (2023).

  28. Cross-Zamirski, J. O. et al. Label-free prediction of cell painting from brightfield images. Sci. Rep. 12, 10001 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Harrison, P. J. et al. Evaluating the utility of brightfield image data for mechanism of action prediction. PLoS Comput. Biol. 19, e1011323 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Belli, B. Brightfield is back: a 17th century cell imaging technique is making a comeback thanks to machine learning. https://www.recursion.com/news/brightfield-is-back-a-17th-century-cell-imaging-technique-is-making-a-comeback-thanks-to-machine-learningRecursion (2024).

  31. Serrano, E. et al. Reproducible image-based profiling with Pycytominer. Preprint at arXiv https://doi.org/10.48550/arXiv.2311.13417 (2024).

  32. Siegismund, D., Fassler, M., Heyse, S. & Steigele, S. Benchmarking feature selection methods for compressing image information in high-content screening. SLAS Technol. 27, 85–93 (2022).

    PubMed  Google Scholar 

  33. Janosch, A., Kaffka, C. & Bickle, M. Unbiased phenotype detection using negative controls. SLAS Discov. 24, 234–241 (2019).

    PubMed  PubMed Central  Google Scholar 

  34. Way, G. P. et al. Morphology and gene expression profiling provide complementary information for mapping cell state. Cell Syst. 13, 911–923 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Caicedo, J. C. et al. Data-analysis strategies for image-based cell profiling. Nat. Methods 14, 849–863 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Altschuler, S. J. & Wu, L. F. Cellular heterogeneity: do differences make a difference? Cell 141, 559–563 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. van Dijk, R., Arevalo, J., Babadi, M., Carpenter, A. E. & Singh, S. Capturing cell heterogeneity in representations of cell populations for image-based profiling using contrastive learning. PLOS Comput. Biol. 20, e1012547 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Arevalo, J. et al. Evaluating batch correction methods for image-based cell profiling. Nat. Commun. 15, 6516 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang, S. et al. DeepNoise: signal and noise disentanglement based on classifying fluorescent microscopy images via deep learning. Genom. Proteom. Bioinform. 20, 989–1001 (2022).

    Google Scholar 

  40. Weisbart, E. et al. Cell Painting Gallery: an open resource for image-based profiling. Nat. Methods 21, 1775–1777 (2024).

    CAS  PubMed  Google Scholar 

  41. Trapotsi, M. A., Hosseini-Gerami, L. & Bender, A. Computational analyses of mechanism of action (MoA): data, methods and integration. RSC Chem. Biol. 3, 170–200 (2022).

    CAS  PubMed  Google Scholar 

  42. Akbarzadeh, M. et al. Morphological profiling by means of the Cell Painting assay enables identification of tubulin-targeting compounds. Cell Chem. Biol. 29, 1053–1064 (2022).

    CAS  PubMed  Google Scholar 

  43. Seal, S. et al. Integrating cell morphology with gene expression and chemical structure to aid mitochondrial toxicity detection. Commun. Biol. 5, 858 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Herman, D. et al. Leveraging Cell Painting images to expand the applicability ___domain and actively improve deep learning quantitative structure–activity relationship models. Chem. Res. Toxicol. 36, 1028–1036 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Garcia de Lomana, M., Marin Zapata, P. A. & Montanari, F. Predicting the mitochondrial toxicity of small molecules: insights from mechanistic assays and cell painting data. Chem. Res. Toxicol. 36, 1107–1120 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Laraia, L., Robke, L. & Waldmann, H. BioactiVe compound collections: from design to target identification. Chem 4, 705–730 (2018).

    CAS  Google Scholar 

  47. Cox, M. J. et al. Tales of 1,008 small molecules: phenomic profiling through live-cell imaging in a panel of reporter cell lines. Sci. Rep. 10, 13262 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. C. Herbert Waldmann—celebrating more than three decades in academia. J. Med. Chem. 66, 15055–15060 (2023).

  49. Laraia, L. et al. Image-based morphological profiling identifies a lysosomotropic, iron-sequestering autophagy inhibitor. Angew. Chem. Int. Ed. 59, 5721–5729 (2020).

    CAS  Google Scholar 

  50. Svenningsen, E. B. & Poulsen, T. B. Establishing cell painting in a smaller chemical biology lab—a report from the frontier. Bioorg. Med. Chem. 27, 2609–2615 (2019).

    CAS  PubMed  Google Scholar 

  51. Schölermann, B. et al. Identification of dihydroorotate dehydrogenase inhibitors using the Cell Painting assay. ChemBioChem 23, e202200475 (2022).

    PubMed  PubMed Central  Google Scholar 

  52. Wilke, J. et al. Discovery of a σ1 receptor antagonist by combination of unbiased cell painting and thermal proteome profiling. Cell Chem. Biol. 28, 848–854 (2021).

    CAS  PubMed  Google Scholar 

  53. Wassermann, A. M. et al. Dark chemical matter as a promising starting point for drug lead discovery. Nat. Chem. Biol. 11, 958–966 (2015).

    CAS  PubMed  Google Scholar 

  54. Pahl, A. et al. Illuminating dark chemical matter using the Cell Painting assay. J. Med. Chem. 67, 8862–8876 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Dürr, O. & Sick, B. Single-cell phenotype classification using deep convolutional neural networks. J. Biomol. Screen 21, 998–1003 (2016).

    PubMed  Google Scholar 

  56. Kensert, A., Harrison, P. J. & Spjuth, O. Transfer learning with deep convolutional neural networks for classifying cellular morphological changes. SLAS Discov. 24, 466–475 (2019).

    PubMed  PubMed Central  Google Scholar 

  57. Lafarge, M. W. et al. Capturing single-cell phenotypic variation via unsupervised representation learning. Proc. Mach. Learn Res. 102, 315–325 (2019).

    Google Scholar 

  58. Wong, D. R. et al. Deep representation learning determines drug mechanism of action from cell painting images. Digital Discov. 2, 1354–1367 (2023).

    Google Scholar 

  59. Liu, G., Seal, S., Arevalo, J. & Liang, Z. Learning molecular representation in a cell. Preprint at arXiv https://doi.org/10.48550/arXiv.2406.12056 (2024).

  60. Simm, J. et al. Repurposing high-throughput image assays enables biological activity prediction for drug discovery. Cell Chem. Biol. 25, 611–618 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Hofmarcher, M., Rumetshofer, E., Clevert, D. A., Hochreiter, S. & Klambauer, G. Accurate prediction of biological assays with high-throughput microscopy images and convolutional networks. J. Chem. Inf. Model. 59, 1163–1171 (2019).

    CAS  PubMed  Google Scholar 

  62. Nyffeler, J. et al. Comparison of approaches for determining bioactivity hits from high-dimensional profiling data. SLAS Discov. 26, 292–308 (2021).

    CAS  PubMed  Google Scholar 

  63. Trapotsi, M. A. et al. Comparison of chemical structure and cell morphology information for multitask bioactivity predictions. J. Chem. Inf. Model. 61, 1444–1456 (2021).

    CAS  PubMed  Google Scholar 

  64. Seal, S. et al. Merging bioactivity predictions from cell morphology and chemical fingerprint models using similarity to training data. J. Cheminform. 15, 56 (2023).

    PubMed  PubMed Central  Google Scholar 

  65. Sanchez-Fernandez, A., Rumetshofer, E., Hochreiter, S. & Klambauer, G. CLOOME: contrastive learning unlocks bioimaging databases for queries with chemical structures. Nat. Commun. 14, 1–14 (2023).

    Google Scholar 

  66. Tian, G., Harrison, P. J., Sreenivasan, A. P., Carreras-Puigvert, J. & Spjuth, O. Combining molecular and cell painting image data for mechanism of action prediction. Artif. Intell. Life Sci. 3, 100060 (2023).

    CAS  Google Scholar 

  67. Moshkov, N. et al. Predicting compound activity from phenotypic profiles and chemical structures. Nat. Commun. 14, 1967 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Fredin Haslum, J. et al. Cell Painting-based bioactivity prediction boosts high-throughput screening hit-rates and compound diversity. Nat. Commun. 15, 1–11 (2024).

    Google Scholar 

  69. Gerry, C. J. et al. Real-time biological annotation of synthetic compounds. J. Am. Chem. Soc. 138, 8920–8927 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Nelson, S. D., Wawer, M. J. & Schreiber, S. L. Divergent synthesis and real-time biological annotation of optically active tetrahydrocyclopenta[c]pyranone derivatives. Org. Lett. 18, 6280–6283 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Gerlach, E. M., Korkmaz, M. A., Pavlinov, I., Gao, Q. & Aldrich, L. N. Systematic diversity-oriented synthesis of reduced flavones from γ-pyrones to probe biological performance diversity. ACS Chem. Biol. 14, 1536–1545 (2019).

    CAS  PubMed  Google Scholar 

  72. Melillo, B. et al. Synergistic effects of stereochemistry and appendages on the performance diversity of a collection of synthetic compounds. J. Am. Chem. Soc. 140, 11784–11790 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Christoforow, A. et al. Design, synthesis, and phenotypic profiling of pyrano-furo-pyridone pseudo natural products. Angew. Chem. Int. Ed. 58, 14715–14723 (2019).

    CAS  Google Scholar 

  74. Foley, D. J. et al. Phenotyping reveals targets of a pseudo-natural-product autophagy inhibitor. Angew. Chem. Int. Ed. 59, 12470–12476 (2020).

    CAS  Google Scholar 

  75. Hippman, R. S. et al. Multiple chemical features impact biological performance diversity of a highly active natural product-inspired library. ChemBioChem 21, 3137–3145 (2020).

    CAS  PubMed  Google Scholar 

  76. Singh, M., Garza, N., Pearson, Z., Douglas, J. & Boskovic, Z. Broad assessment of bioactivity of a collection of spiroindane pyrrolidines through ‘cell painting’. Bioorg. Med. Chem. 28, 115547 (2020).

    CAS  PubMed  Google Scholar 

  77. Liu, J. et al. Design, synthesis, and biological evaluation of chemically and biologically diverse pyrroquinoline pseudo natural products. Angew. Chem. Int. Ed. 60, 4648–4656 (2021).

    CAS  Google Scholar 

  78. Burhop, A. et al. Synthesis of indofulvin pseudo-natural products yields a new autophagy inhibitor chemotype. Adv. Sci. 8, e2102042 (2021).

    Google Scholar 

  79. Seal, S. et al. From pixels to phenotypes: integrating image-based profiling with cell health data as BioMorph features improves interpretability. Mol. Biol. Cell 35, mr2 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Seal, S., Yang, H., Vollmers, L. & Bender, A. Comparison of cellular morphological descriptors and molecular fingerprints for the prediction of cytotoxicity- and proliferation-related assays. Chem. Res. Toxicol. 34, 422–437 (2021).

    CAS  PubMed  Google Scholar 

  81. Trapotsi, M. A. et al. Cell morphological profiling enables high-throughput screening for proteolysis targeting chimera (PROTAC) phenotypic signature. ACS Chem. Biol. 17, 1733–1744 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Seal, S. et al. Improved detection of drug-induced liver injury by integrating predicted in vivo and in vitro data. Chem. Res Toxicol. 37, 1290–1305 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Nyffeler, J. et al. Bioactivity screening of environmental chemicals using imaging-based high-throughput phenotypic profiling. Toxicol. Appl. Pharmacol. 389, 114876 (2020).

    CAS  PubMed  Google Scholar 

  84. Nyffeler, J. et al. Application of Cell Painting for chemical hazard evaluation in support of screening-level chemical assessments. Toxicol. Appl. Pharmacol. 468, 116513 (2023).

    CAS  PubMed  Google Scholar 

  85. Thomas, R. S. et al. The next generation blueprint of computational toxicology at the U.S. Environmental Protection Agency. Toxicol. Sci. 169, 317–332 (2019).

    CAS  PubMed  Google Scholar 

  86. Chen, M. et al. DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans. Drug Discov. Today 21, 648–653 (2016).

    CAS  PubMed  Google Scholar 

  87. Seal, S. et al. Improved detection of drug-induced liver injury by integrating predicted in vivo and in vitro data. Chem. Res. Toxicol. 37, 1290–1305 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Seal, S. et al. Insights into drug cardiotoxicity from biological and chemical data: the first public classifiers for FDA drug-induced cardiotoxicity rank. J. Chem. Inf. Model. 64, 1172–1186 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Horne, R. I. et al. Using generative modeling to endow with potency initially inert compounds with good bioavailability and low toxicity. J. Chem. Inf. Model. 64, 590–596 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Seal, S. et al. PKSmart: an open-source computational model to predict in vivo pharmacokinetics of small molecules. Preprint at bioRxiv https://doi.org/10.1101/2024.02.02.578658 (2024).

  91. Pierozan, P., Kosnik, M. & Karlsson, O. High-content analysis shows synergistic effects of low perfluorooctanoic acid (PFOS) and perfluorooctane sulfonic acid (PFOA) mixture concentrations on human breast epithelial cell carcinogenesis. Environ. Int. 172, 107746 (2023).

    CAS  PubMed  Google Scholar 

  92. Rietdijk, J. et al. Morphological profiling of environmental chemicals enables efficient and untargeted exploration of combination effects. Sci. Total Environ. 832, 155058 (2022).

    CAS  PubMed  Google Scholar 

  93. Chow, Y. L., Singh, S., Carpenter, A. E. & Way, G. P. Predicting drug polypharmacology from cell morphology readouts using variational autoencoder latent space arithmetic. PLoS Comput. Biol. 18, e1009888 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Rohban, M. H. et al. Systematic morphological profiling of human gene and allele function via cell painting. eLife 6, e24060 (2017).

    PubMed  PubMed Central  Google Scholar 

  95. Rohban, M. H. et al. Virtual screening for small-molecule pathway regulators by image-profile matching. Cell Syst. 13, 724–736 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Hughes, R. E., Elliott, R. J. R., Dawson, J. C. & Carragher, N. O. High-content phenotypic and pathway profiling to advance drug discovery in diseases of unmet need. Cell Chem. Biol. 28, 338–355 (2021).

    CAS  PubMed  Google Scholar 

  97. Hughes, R. E. et al. High-content phenotypic profiling in esophageal adenocarcinoma identifies selectively active pharmacological classes of drugs for repurposing and chemical starting points for novel drug discovery. SLAS Discov. 25, 770–782 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Cuccarese, M. F. et al. Functional immune mapping with deep-learning enabled phenomics applied to immunomodulatory and COVID-19 drug discovery. Preprint at bioRxiv https://doi.org/10.1101/2020.08.02.233064 (2020).

  99. Heiser, K. et al. Identification of potential treatments for COVID-19 through artificial intelligence-enabled phenomic analysis of human cells infected with SARS-CoV-2. Preprint at bioRxiv https://doi.org/10.1101/2020.04.21.054387 (2020).

  100. Carey, K. L. et al. TFEB transcriptional responses reveal negative feedback by BHLHE40 and BHLHE41. Cell Rep. 33, 108371 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Kelley, M. E. et al. High-content microscopy reveals a morphological signature of bortezomib resistance. eLife. 12, e91362 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Tegtmeyer, M. et al. High-dimensional phenotyping to define the genetic basis of cellular morphology. Nat. Commun. 15, 347 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. McDiarmid, A. H. et al. Morphological profiling in human neural progenitor cells classifies hits in a pilot drug screen for Alzheimer’s disease. Brain Commun. 6, fcae101 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Schiff, L. et al. Integrating deep learning and unbiased automated high-content screening to identify complex disease signatures in human fibroblasts. Nat. Commun. 13, 1590 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Yang, S. J. et al. Applying deep neural network analysis to high-content image-based assays. SLAS Discov. 24, 829–841 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Liu, A., Seal, S., Yang, H. & Bender, A. Using chemical and biological data to predict drug toxicity. SLAS Discov. 28, 53–64 (2023).

    CAS  PubMed  Google Scholar 

  107. Nassiri, I. & McCall, M. N. Systematic exploration of cell morphological phenotypes associated with a transcriptomic query. Nucleic Acids Res. 46, e116 (2018).

    PubMed  PubMed Central  Google Scholar 

  108. Haghighi, M., Caicedo, J. C., Cimini, B. A., Carpenter, A. E. & Singh, S. High-dimensional gene expression and morphology profiles of cells across 28,000 genetic and chemical perturbations. Nat. Methods 19, 1550–1557 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Nyffeler, J. et al. Combining phenotypic profiling and targeted RNA-Seq reveals linkages between transcriptional perturbations and chemical effects on cell morphology: retinoic acid as an example. Toxicol. Appl. Pharmacol. 444, 116032 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Cerisier, N., Dafniet, B., Badel, A. & Taboureau, O. Linking chemicals, genes and morphological perturbations to diseases. Toxicol. Appl. Pharmacol. 461, 116407 (2023).

    CAS  PubMed  Google Scholar 

  111. Camunas-Soler, J. Integrating single-cell transcriptomics with cellular phenotypes: cell morphology, Ca2+ imaging and electrophysiology. Biophys. Rev. 16, 89–107 (2023).

    PubMed  PubMed Central  Google Scholar 

  112. Dagher, M. et al. nELISA: a high-throughput, high-plex platform enables quantitative profiling of the secretome. Preprint at bioRxiv https://doi.org/10.1101/2023.04.17.535914 (2023).

  113. Schneidewind, T. et al. Combined morphological and proteome profiling reveals target-independent impairment of cholesterol homeostasis. Cell Chem. Biol. 28, 1780–1794 (2021).

    CAS  PubMed  Google Scholar 

  114. Way, G. P., Sailem, H., Shave, S., Kasprowicz, R. & Carragher, N. O. Evolution and impact of high content imaging. SLAS Discov. 28, 292–305 (2023).

    CAS  PubMed  Google Scholar 

  115. Lukonin, I., Zinner, M. & Liberali, P. Organoids in image-based phenotypic chemical screens. Exp. Mol. Med. 53, 1495–1502 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Cottet, M. et al. Live cell painting: New nontoxic dye to probe cell physiology in high content screening. SLAS Discov. 29, 100121 (2023).

    Google Scholar 

  117. Bray, M.-A. et al. A dataset of images and morphological profiles of 30 000 small-molecule treatments using the Cell Painting assay. Gigascience 6, 1–5 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Fay, M. M. et al. RxRx3: phenomics map of biology. Preprint at bioRxiv https://doi.org/10.1101/2023.02.07.527350 (2023).

  119. Ramezani, M. et al. A genome-wide atlas of human cell morphology. Preprint at bioRxiv https://doi.org/10.1101/2023.08.06.552164 (2023).

  120. Schneidewind, T. et al. Morphological profiling identifies a common mode of action for small molecules with different targets. ChemBioChem 21, 3197–3207 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Pahl, A. et al. Morphological subprofile analysis for bioactivity annotation of small molecules. Cell Chem. Biol. 30, 839–853 (2023).

    CAS  PubMed  Google Scholar 

  122. Lapins, M. & Spjuth, O. Evaluation of gene expression and phenotypic profiling data as quantitative descriptors for predicting drug targets and mechanisms of action. Preprint at bioRxiv https://doi.org/10.1101/580654 (2019).

Download references

Acknowledgements

S. Seal acknowledges funding from the Cambridge Centre for Data-Driven Discovery (C2D3) and Accelerate Programme for Scientific Discovery. A.E.C., S. Singh, and S. Seal acknowledge funding from the National Institutes of Health (R35 GM122547 to A.E.C.). O.S. acknowledges funding from the Swedish Research Council (Grants 2020-03731 and 2020-01865), FORMAS (Grant 2022-00940), Swedish Cancer Foundation (22 2412 Pj 03 H), and Horizon Europe (Grant Agreements 101057014 (PARC) and 101057442 (REMEDI4ALL)).

Author information

Authors and Affiliations

Authors

Contributions

S. Seal and M.-A.T. designed and performed the systematic review on studies using Cell Painting data. S. Seal, M.-A.T., and A.E.C. wrote the manuscript with extensive discussions with all authors. All of the authors reviewed, edited, and contributed to discussions on the manuscript and approved the final version of the manuscript.

Corresponding authors

Correspondence to Srijit Seal, Maria-Anna Trapotsi or Anne E. Carpenter.

Ethics declarations

Competing interests

S. Singh and A.E.C. serve as scientific advisors for companies that use image-based profiling and Cell Painting (A.E.C.: Recursion, SyzOnc, Quiver Bioscience; S. Singh: Waypoint Bio, Dewpoint Therapeutics, DeepCell) and receive honoraria for occasional talks at pharmaceutical and biotechnology companies. J.C.P. and O.S. declare ownership in Phenaros Pharmaceuticals. M.-A.T. and N.G. were formerly employed at AstraZeneca. M.-A.T. and N.G. are currently employed at Recursion Pharmaceuticals. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Methods thanks Jeremy Jenkins and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary handling editor: Rita Strack, in collaboration with the Nature Methods team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Reporting Summary

Supplementary Table 1

Definitions of essential terms in image-based profiling

Supplementary Table 2

90 studies included in this study

Supplementary Table 3

65 studies excluded in this study

Supplementary Table 4

Academic institutions, government agencies, pharmaceutical companies, non-profit organizations that led studies evaluated in this work and/or are members of the JUMPCP or OASIS consortiums.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seal, S., Trapotsi, MA., Spjuth, O. et al. Cell Painting: a decade of discovery and innovation in cellular imaging. Nat Methods 22, 254–268 (2025). https://doi.org/10.1038/s41592-024-02528-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-024-02528-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing