Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Blood-to-brain communication in aging and rejuvenation

Abstract

Aging induces molecular, cellular and functional changes in the adult brain that drive cognitive decline and increase vulnerability to dementia-related neurodegenerative diseases. Leveraging systemic and lifestyle interventions, such as heterochronic parabiosis, administration of ‘young blood’, exercise and caloric restriction, has challenged prevalent views of brain aging as a rigid process and has demonstrated that aging-associated cognitive and cellular impairments can be restored to more youthful levels. Technological advances in proteomic and transcriptomic analyses have further facilitated investigations into the functional impact of intertissue communication on brain aging and have led to the identification of a growing number of pro-aging and pro-youthful factors in blood. In this review, we discuss blood-to-brain communication from a systems physiology perspective with an emphasis on blood-derived signals as potent drivers of both age-related brain dysfunction and brain rejuvenation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cellular hallmarks of brain aging.
Fig. 2: Pro-aging interventions.
Fig. 3: Rejuvenating interventions.
Fig. 4: Intertissue communication in brain aging and rejuvenation.

Similar content being viewed by others

References

  1. Lehallier, B. et al. Undulating changes in human plasma proteome profiles across the lifespan. Nat. Med. 25, 1843–1850 (2019). This is an extensive resource of aging-associated changes of the human plasma proteome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schaum, N. et al. Ageing hallmarks exhibit organ-specific temporal signatures. Nature 583, 596–602 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Praag, H., van, Shubert, T., Zhao, C. & Gage, F. H. Exercise enhances learning and hippocampal neurogenesis in aged mice. J. Neurosci. 25, 8680–8685 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kramer, A. F. et al. Ageing, fitness and neurocognitive function. Nature 400, 418–419 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Ingram, D. K., Weindruch, R., Spangler, E. L., Freeman, J. R. & Walford, R. L. Dietary restriction benefits learning and motor performance of aged mice. J. Gerontol. 42, 78–81 (1987).

    Article  CAS  PubMed  Google Scholar 

  6. Witte, A. V., Fobker, M., Gellner, R., Knecht, S. & Flöel, A. Caloric restriction improves memory in elderly humans. Proc. Natl Acad. Sci. USA 106, 1255–1260 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Horowitz, A. M. et al. Blood factors transfer beneficial effects of exercise on neurogenesis and cognition to the aged brain. Science 369, 167–173 (2020). The beneficial effects of exercise during old age can be transferred through blood plasma and the liver-derived systemic enzyme GPLD1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Villeda, S. A. et al. The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 477, 90–94 (2011). This report demonstrates that systemic blood factors, including CCL11, impair cognitive and regenerative functions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Villeda, S. A. et al. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat. Med. 20, 659–663 (2014). This study provided evidence that blood plasma administration is sufficient to restore cognitive deficits in aged recipient mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Katsimpardi, L. et al. Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science 344, 630–634 (2014). GDF11 treatment enhances vascular function and neurogenesis in the aged SVZ.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wyss-Coray, T. Ageing, neurodegeneration and brain rejuvenation. Nature 539, 180–186 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fan, X., Wheatley, E. G. & Villeda, S. A. Mechanisms of hippocampal aging and the potential for rejuvenation. Annu. Rev. Neurosci. 40, 251–272 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Hou, Y. et al. Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol. 15, 565–581 (2019).

    Article  PubMed  Google Scholar 

  14. Wheatley, E. G. et al. Neuronal O-GlcNAcylation improves cognitive function in the aged mouse brain. Curr. Biol. 29, 3359–3369 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mattson, M. P. & Arumugam, T. V. Hallmarks of brain aging: adaptive and pathological modification by metabolic states. Cell Metab. 27, 1176–1199 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Simkin, D. et al. Aging-related hyperexcitability in CA3 pyramidal neurons is mediated by enhanced A-type K+ channel function and expression. J. Neurosci. 35, 13206–13218 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gontier, G. et al. Tet2 rescues age-related regenerative decline and enhances cognitive function in the adult mouse brain. Cell Rep. 22, 1974–1981 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Enwere, E. et al. Aging results in reduced epidermal growth factor receptor signaling, diminished olfactory neurogenesis, and deficits in fine olfactory discrimination. J. Neurosci. 24, 8354–8365 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang, G. et al. Hypothalamic programming of systemic ageing involving IKK-β, NF-κB and GnRH. Nature 497, 211–216 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Negredo, P. N., Yeo, R. W. & Brunet, A. Aging and rejuvenation of neural stem cells and their niches. Cell Stem Cell 27, 202–223 (2020).

    Article  PubMed Central  Google Scholar 

  21. Sorrells, S. F. et al. Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature 555, 377–381 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Boldrini, M. et al. Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell 22, 589–599 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Moreno-Jiménez, E. P. et al. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat. Med. 25, 554–560 (2019).

    Article  PubMed  Google Scholar 

  24. Akers, K. G. et al. Hippocampal neurogenesis regulates forgetting during adulthood and infancy. Science 344, 598–602 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Sahay, A. et al. Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature 472, 466–470 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang, F. et al. Myelin degeneration and diminished myelin renewal contribute to age-related deficits in memory. Nat. Neurosci. 23, 481–486 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sierra, A., Gottfried‐Blackmore, A. C., McEwen, B. S. & Bulloch, K. Microglia derived from aging mice exhibit an altered inflammatory profile. Glia 55, 412–424 (2007).

    Article  PubMed  Google Scholar 

  28. Grabert, K. et al. Microglial brain region-dependent diversity and selective regional sensitivities to aging. Nat. Neurosci. 19, 504–516 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stephan, A. H. et al. A dramatic increase of C1q protein in the CNS during normal aging. J. Neurosci. 33, 13460–13474 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shi, Q. et al. Complement C3-deficient mice fail to display age-related hippocampal decline. J. Neurosci. 35, 13029–13042 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pluvinage, J. V. et al. CD22 blockade restores homeostatic microglial phagocytosis in ageing brains. Nature 568, 187–192 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Clarke, L. E. et al. Normal aging induces A1-like astrocyte reactivity. Proc. Natl Acad. Sci. USA 115, E1896–E1905 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Boisvert, M. M., Erikson, G. A., Shokhirev, M. N. & Allen, N. J. The aging astrocyte transcriptome from multiple regions of the mouse brain. Cell Rep. 22, 269–285 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Escartin, C. et al. Reactive astrocyte nomenclature, definitions, and future directions. Nat. Neurosci. 24, 312–325 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Buckley, M. W. & McGavern, D. B. Immune dynamics in the CNS and its barriers during homeostasis and disease. Immunol. Rev. 306, 58–75 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mrdjen, D. et al. High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease. Immunity 48, 380–395 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Silva, T. M. D. & Faraci, F. M. Contributions of aging to cerebral small vessel disease. Annu. Rev. Physiol. 82, 275–295 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ungvari, Z. et al. Endothelial dysfunction and angiogenesis impairment in the ageing vasculature. Nat. Rev. Cardiol. 15, 555–565 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Montagne, A. et al. Blood–brain barrier breakdown in the aging human hippocampus. Neuron 85, 296–302 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nation, D. A. et al. Blood–brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat. Med. 25, 270–276 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Soto, I. et al. APOE stabilization by exercise prevents aging neurovascular dysfunction and complement induction. PLoS Biol. 13, e1002279 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yousef, H. et al. Aged blood impairs hippocampal neural precursor activity and activates microglia via brain endothelial cell VCAM1. Nat. Med. 25, 988–1000 (2019). This study characterizes aging BECs and the effect of VCAM1 on neuroinflammatory, regenerative and cognitive dysfunction with age.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chen, M. B. et al. Brain endothelial cells are exquisite sensors of age-related circulatory cues. Cell Rep. 30, 4418–4432 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yang, A. C. et al. Physiological blood–brain transport is impaired with age by a shift in transcytosis. Nature 583, 425–430 (2020). This study used a new and innovative approach to investigate BBB function and plasma protein transport with age.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Propson, N. E., Roy, E. R., Litvinchuk, A., Köhl, J. & Zheng, H. Endothelial C3a receptor mediates vascular inflammation and blood–brain barrier permeability during aging. J. Clin. Invest. 131, e140966 (2021).

  46. Rebo, J. et al. A single heterochronic blood exchange reveals rapid inhibition of multiple tissues by old blood. Nat. Commun. 7, 13363 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yousef, H. et al. Systemic attenuation of the TGF-β pathway by a single drug simultaneously rejuvenates hippocampal neurogenesis and myogenesis in the same old mammal. Oncotarget 6, 11959–11978 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Smith, L. K. et al. β2-microglobulin is a systemic pro-aging factor that impairs cognitive function and neurogenesis. Nat. Med. 21, 932–937 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Smith, L. K. et al. The aged hematopoietic system promotes hippocampal‐dependent cognitive decline. Aging Cell 19, e13192 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Minhas, P. S. et al. Restoring metabolism of myeloid cells reverses cognitive decline in ageing. Nature 590, 122–128 (2021). Targeting EP2 signaling in aged peripheral myeloid cells reduces systemic and brain inflammatory states and enhances synaptic plasticity and cognitive functions in aged animals.

  51. Berry, K. et al. B and T lymphocyte densities remain stable with age in human cortex. ASN Neuro 13, 17590914211018116 (2021).

    Article  Google Scholar 

  52. Jin, W.-N. et al. Neuroblast senescence in the aged brain augments natural killer cell cytotoxicity leading to impaired neurogenesis and cognition. Nat. Neurosci. 24, 61–73 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Dulken, B. W. et al. Single-cell analysis reveals T cell infiltration in old neurogenic niches. Nature 571, 205–210 (2019). This study identified a role for infiltrating immune cells on neuronal stem cell function in the aging SVZ.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Unger, M. S. et al. CD8+ T-cells infiltrate Alzheimer’s disease brains and regulate neuronal- and synapse-related gene expression in APP-PS1 transgenic mice. Brain Behav. Immun. 89, 67–86 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Batterman, K. V., Cabrera, P. E., Moore, T. L. & Rosene, D. L. T cells actively infiltrate the white matter of the aging monkey brain in relation to increased microglial reactivity and cognitive decline. Front. Immunol. 12, 607691 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gate, D. et al. Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer’s disease. Nature 577, 399–404 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ransohoff, R. M. Chemokines and chemokine receptors: standing at the crossroads of immunobiology and neurobiology. Immunity 31, 711–721 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Baruch, K. et al. CNS-specific immunity at the choroid plexus shifts toward destructive TH2 inflammation in brain aging. Proc. Natl Acad. Sci. USA 110, 2264–2269 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Das, M. M. et al. Young bone marrow transplantation preserves learning and memory in old mice. Commun. Biol. 2, 73 (2019). This study used heterochronic bone marrow transplantation to rejuvenate the aged brain.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Fernández-Castañeda, A. et al. Mild respiratory COVID can cause multi-lineage neural cell and myelin dysregulation. Cell 185, 2452–2468 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Erickson, M. A., Morofuji, Y., Owen, J. B. & Banks, W. A. Rapid transport of CCL11 across the blood–brain barrier: regional variation and importance of blood cells. J. Pharmacol. Exp. Ther. 349, 497–507 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Stamatovic, S. M. et al. Monocyte chemoattractant protein-1 regulation of blood–brain barrier permeability. J. Cereb. Blood Flow Metab. 25, 593–606 (2004).

    Article  Google Scholar 

  63. Bettcher, B. M. et al. MCP-1 and eotaxin-1 selectively and negatively associate with memory in MCI and Alzheimer’s disease dementia phenotypes. Alzheimers Dement. 3, 91–97 (2016).

    Google Scholar 

  64. Lee, W.-J. et al. Plasma MCP-1 and cognitive decline in patients with Alzheimer’s disease and mild cognitive impairment: a two-year follow-up study. Sci. Rep. 8, 1280 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Carrette, O. et al. A panel of cerebrospinal fluid potential biomarkers for the diagnosis of Alzheimer’s disease. Proteomics 3, 1486–1494 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Brew, B. J., Dunbar, N., Pemberton, L. & Kaldor, J. Predictive markers of AIDS dementia complex: CD4 cell count and cerebrospinal fluid concentrations of beta 2-microglobulin and neopterin. J. Infect. Dis. 174, 294–298 (1996).

    Article  CAS  PubMed  Google Scholar 

  67. Starkey, H. D. V. et al. Neuroglial expression of the MHCI pathway and PirB receptor is upregulated in the hippocampus with advanced aging. J. Mol. Neurosci. 48, 111–126 (2012).

    Article  Google Scholar 

  68. Huh, G. S. et al. Functional requirement for class I MHC in CNS development and plasticity. Science 290, 2155–2159 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lin, K. et al. MHC class I H2-Kb negatively regulates neural progenitor cell proliferation by inhibiting FGFR signaling. PLoS Biol. 19, e3001311 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bogeska, R. et al. Inflammatory exposure drives long-lived impairment of hematopoietic stem cell self-renewal activity and accelerated aging. Cell Stem Cell 29, 1273–1284 (2022).

    Article  CAS  PubMed  Google Scholar 

  71. Ho, T. T. et al. Aged hematopoietic stem cells are refractory to bloodborne systemic rejuvenation interventions. J. Exp. Med. 218, e20210223 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jin, Z.-G. et al. Cyclophilin A is a proinflammatory cytokine that activates endothelial cells. Arterioscler. Thromb. Vasc. Biol. 24, 1186–1191 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Tchalla, A. E. et al. Elevated soluble vascular cell adhesion molecule-1 is associated with cerebrovascular resistance and cognitive function. J. Gerontol. A Biol. Sci. Med. Sci. 72, 560–566 (2017).

    PubMed  Google Scholar 

  74. Zuliani, G. et al. Markers of endothelial dysfunction in older subjects with late onset Alzheimer’s disease or vascular dementia. J. Neurol. Sci. 272, 164–170 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Park, M. H. et al. Vascular and neurogenic rejuvenation in aging mice by modulation of ASM. Neuron 100, 167–182 (2018).

    Article  CAS  PubMed  Google Scholar 

  76. Biessels, G. J. & Despa, F. Cognitive decline and dementia in diabetes mellitus: mechanisms and clinical implications. Nat. Rev. Endocrinol. 14, 591–604 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Bocarsly, M. E. et al. Obesity diminishes synaptic markers, alters microglial morphology, and impairs cognitive function. Proc. Natl Acad. Sci. USA 112, 15731–15736 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Cifre, M., Palou, A. & Oliver, P. Cognitive impairment in metabolically-obese, normal-weight rats: identification of early biomarkers in peripheral blood mononuclear cells. Mol. Neurodegener. 13, 14 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Parikh, I. et al. Caloric restriction preserves memory and reduces anxiety of aging mice with early enhancement of neurovascular functions. Aging 8, 2814–2826 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Conboy, I. M. et al. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433, 760–764 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Brack, A. S. et al. Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317, 807–810 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Ruckh, J. M. et al. Rejuvenation of regeneration in the aging central nervous system. Cell Stem Cell 10, 96–103 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Loffredo, F. S. et al. Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell 153, 828–839 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Salpeter, S. J. et al. Systemic regulation of the age-related decline of pancreatic β-cell replication. Diabetes 62, 2843–2848 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yousefzadeh, M. J. et al. Heterochronic parabiosis regulates the extent of cellular senescence in multiple tissues. Geroscience 42, 951–961 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Khrimian, L. et al. Gpr158 mediates osteocalcin’s regulation of cognition. J. Exp. Med. 214, 2859–2873 (2017). This study identified osteocalcin as a bone-derived rejuvenating factor in young blood.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Mehdipour, M. et al. Rejuvenation of three germ layers tissues by exchanging old blood plasma with saline–albumin. Aging 12, 8790–8819 (2020). This study established neutral blood exchange as a new rejuvenating intervention.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mehdipour, M. et al. Plasma dilution improves cognition and attenuates neuroinflammation in old mice. Geroscience 43, 1–18 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Middeldorp, J. et al. Preclinical assessment of young blood plasma for Alzheimer disease. JAMA Neurol. 73, 1325–1333 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Boada, M. et al. A randomized, controlled clinical trial of plasma exchange with albumin replacement for Alzheimer’s disease: primary results of the AMBAR Study. Alzheimer’s Dement. 16, 1412–1425 (2020).

    Article  Google Scholar 

  91. Speisman, R. B., Kumar, A., Rani, A., Foster, T. C. & Ormerod, B. K. Daily exercise improves memory, stimulates hippocampal neurogenesis and modulates immune and neuroimmune cytokines in aging rats. Brain Behav. Immun. 28, 25–43 (2013).

    Article  CAS  PubMed  Google Scholar 

  92. Rhyu, I. J. et al. Effects of aerobic exercise training on cognitive function and cortical vascularity in monkeys. Neuroscience 167, 1239–1248 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Erickson, K. I. et al. Exercise training increases size of hippocampus and improves memory. Proc. Natl Acad. Sci. USA 108, 3017–3022 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ding, Y.-H. et al. Cerebral angiogenesis and expression of angiogenic factors in aging rats after exercise. Curr. Neurovasc. Res. 3, 15–23 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Casaletto, K. et al. Late‐life physical activity relates to brain tissue synaptic integrity markers in older adults. Alzheimers Dement. 18, 2023–2035 (2022).

  96. Miguel, Z. D. et al. Exercise plasma boosts memory and dampens brain inflammation via clusterin. Nature 600, 494–499 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Neeper, S. A., Góauctemez-Pinilla, F., Choi, J. & Cotman, C. Exercise and brain neurotrophins. Nature 373, 109 (1995).

    Article  CAS  PubMed  Google Scholar 

  98. Wahl, D. et al. Comparing the effects of low-protein and high-carbohydrate diets and caloric restriction on brain aging in mice. Cell Rep. 25, 2234–2243 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Dal-Pan, A. et al. Cognitive performances are selectively enhanced during chronic caloric restriction or resveratrol supplementation in a primate. PLoS ONE 6, e16581 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Leclerc, E. et al. The effect of caloric restriction on working memory in healthy non-obese adults. CNS Spectr. 25, 2–8 (2020).

    Article  PubMed  Google Scholar 

  101. Colman, R. J. et al. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325, 201–204 (2009). This seminal study demonstrates the benefits that caloric restriction has on lifespan and age-associated brain atrophy in rhesus macaques.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lin, A.-L., Zhang, W., Gao, X. & Watts, L. Caloric restriction increases ketone bodies metabolism and preserves blood flow in aging brain. Neurobiol. Aging 36, 2296–2303 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kaur, M., Sharma, S. & Kaur, G. Age-related impairments in neuronal plasticity markers and astrocytic GFAP and their reversal by late-onset short term dietary restriction. Biogerontology 9, 441–454 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Lee, J., Seroogy, K. B. & Mattson, M. P. Dietary restriction enhances neurotrophin expression and neurogenesis in the hippocampus of adult mice. J. Neurochem. 80, 539–547 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Morgan, T. E. et al. The mosaic of brain glial hyperactivity during normal ageing and its attenuation by food restriction. Neuroscience 89, 687–699 (1999).

    Article  CAS  PubMed  Google Scholar 

  106. Ferreira-Marques, M. et al. Caloric restriction stimulates autophagy in rat cortical neurons through neuropeptide Y and ghrelin receptors activation. Aging 8, 1470–1484 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. McPherron, A. C., Lawler, A. M. & Lee, S.-J. Regulation of anterior/posterior patterning of the axial skeleton by growth/differentiation factor 11. Nat. Genet. 22, 260–264 (1999).

    Article  CAS  PubMed  Google Scholar 

  108. Egerman, M. A. et al. GDF11 increases with age and inhibits skeletal muscle regeneration. Cell Metab. 22, 164–174 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ozek, C., Krolewski, R. C., Buchanan, S. M. & Rubin, L. L. Growth differentiation factor 11 treatment leads to neuronal and vascular improvements in the hippocampus of aged mice. Sci. Rep. 8, 17293 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Mayweather, B. A., Buchanan, S. M. & Rubin, L. L. GDF11 expressed in the adult brain negatively regulates hippocampal neurogenesis. Mol. Brain 14, 134 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Oury, F. et al. Maternal and offspring pools of osteocalcin influence brain development and functions. Cell 155, 228–241 (2013).

    Article  CAS  PubMed  Google Scholar 

  112. Castellano, J. M. et al. Human umbilical cord plasma proteins revitalize hippocampal function in aged mice. Nature 544, 488–492 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. McLay, R. N., Kimura, M., Banks, W. A. & Kastin, A. J. Granulocyte–macrophage colony-stimulating factor crosses the blood–brain and blood–spinal cord barriers. Brain 120, 2083–2091 (1997).

    Article  PubMed  Google Scholar 

  114. Boyd, T. D. et al. GM-CSF upregulated in rheumatoid arthritis reverses cognitive impairment and amyloidosis in Alzheimer mice. J. Alzheimers Dis. 21, 507–518 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Gan, K. J. & Südhof, T. C. Specific factors in blood from young but not old mice directly promote synapse formation and NMDA-receptor recruitment. Proc. Natl Acad. Sci. USA 116, 12524–12533 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Yang, J. et al. Association of accelerated long-term forgetting and senescence-related blood-borne factors in asymptomatic individuals from families with autosomal dominant Alzheimer’s disease. Alzheimers Res. Ther. 13, 107 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kurosu, H. et al. Suppression of aging in mice by the hormone klotho. Science 309, 1829–1833 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Leon, J. et al. Peripheral elevation of a klotho fragment enhances brain function and resilience in young, aging, and α-synuclein transgenic mice. Cell Rep. 20, 1360–1371 (2017). Systemic administration of the longevity factor α-klotho enhances cognitive function in aged mice and models of neurodegeneration.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Hu, M. C. et al. Renal production, uptake, and handling of circulating αklotho. J. Am. Soc. Nephrol. 27, 79–90 (2016).

    Article  CAS  PubMed  Google Scholar 

  120. Zhu, L. et al. Klotho controls the brain–immune system interface in the choroid plexus. Proc. Natl Acad. Sci. USA 115, E11388–E11396 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Chow, L. S. et al. Exerkines in health, resilience and disease. Nat. Rev. Endocrinol. 18, 273–289 (2022).

    Article  CAS  PubMed  Google Scholar 

  122. Schwarz, A. J., Brasel, J. A., Hintz, R. L., Mohan, S. & Cooper, D. M. Acute effect of brief low- and high-intensity exercise on circulating insulin-like growth factor (IGF) I, II, and IGF-binding protein-3 and its proteolysis in young healthy men. J. Clin. Endocrinol. Metab. 81, 3492–3497 (1996).

    CAS  PubMed  Google Scholar 

  123. Reinhardt, R. R. & Bondy, C. A. Insulin-like growth factors cross the blood–brain barrier. Endocrinology 135, 1753–1761 (1994).

    Article  CAS  PubMed  Google Scholar 

  124. Carro, E., Nuñez, A., Busiguina, S. & Torres-Aleman, I. Circulating insulin-like growth factor I mediates effects of exercise on the brain. J. Neurosci. 20, 2926–2933 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Trejo, J. L., Carro, E. & Torres-Aleman, I. Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J. Neurosci. 21, 1628–1634 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Markowska, A. L., Mooney, M. & Sonntag, W. E. Insulin-like growth factor-1 ameliorates age-related behavioral deficits. Neuroscience 87, 559–569 (1998).

    Article  CAS  PubMed  Google Scholar 

  127. Ding, Q., Vaynman, S., Akhavan, M., Ying, Z. & Gomez-Pinilla, F. Insulin-like growth factor I interfaces with brain-derived neurotrophic factor-mediated synaptic plasticity to modulate aspects of exercise-induced cognitive function. Neuroscience 140, 823–833 (2006).

    Article  CAS  PubMed  Google Scholar 

  128. Li, X. et al. Cap‐independent translation of GPLD1 enhances markers of brain health in long‐lived mutant and drug‐treated mice. Aging Cell 21, e13685 (2022).

  129. Leiter, O. et al. Selenium mediates exercise-induced adult neurogenesis and reverses learning deficits induced by hippocampal injury and aging. Cell Metab. 34, 408–423 (2022).

  130. Pohlkamp, T., Wasser, C. R. & Herz, J. Functional roles of the interaction of APP and lipoprotein receptors. Front. Mol. Neurosci. 10, 54 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Schwarz, M. et al. Potential protective role of apoprotein J (clusterin) in atherogenesis: binding to enzymatically modified low-density lipoprotein reduces fatty acid-mediated cytotoxicity. Thromb. Haemost. 100, 110–118 (2008).

    Article  CAS  PubMed  Google Scholar 

  132. Islam, M. R. et al. Exercise hormone irisin is a critical regulator of cognitive function. Nat. Metab. 3, 1058–1070 (2021). The systemic myokine irisin reduces neuroinflammation and enhances cognitive function in models of AD pathology.

    Article  CAS  PubMed  Google Scholar 

  133. Boström, P. et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481, 463–468 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Wrann, C. D. et al. Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell Metab. 18, 649–659 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Lourenco, M. V. et al. Exercise-linked FNDC5/irisin rescues synaptic plasticity and memory defects in Alzheimer’s models. Nat. Med. 25, 165–175 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Fabel, K. et al. VEGF is necessary for exercise-induced adult hippocampal neurogenesis. Eur. J. Neurosci. 18, 2803–2812 (2003).

    Article  PubMed  Google Scholar 

  137. Hayek, L. E. et al. Lactate mediates the effects of exercise on learning and memory through SIRT1-dependent activation of hippocampal brain-derived neurotrophic factor (BDNF). J. Neurosci. 39, 2369–2382 (2019).

    PubMed  PubMed Central  Google Scholar 

  138. Moon, H. Y. et al. Running-induced systemic cathepsin B secretion is associated with memory function. Cell Metab. 24, 332–340 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kestin, A. S. et al. Effect of strenuous exercise on platelet activation state and reactivity. Circulation 88, 1502–1511 (2018).

    Article  Google Scholar 

  140. Leiter, O. et al. Exercise-induced activated platelets increase adult hippocampal precursor proliferation and promote neuronal differentiation. Stem Cell Rep. 12, 667–679 (2019).

    Article  CAS  Google Scholar 

  141. Shimazu, T. et al. Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 339, 211–214 (2013).

    Article  CAS  PubMed  Google Scholar 

  142. Reger, M. A. et al. Effects of β-hydroxybutyrate on cognition in memory-impaired adults. Neurobiol. Aging 25, 311–314 (2004).

    Article  CAS  PubMed  Google Scholar 

  143. Murray, A. J. et al. Novel ketone diet enhances physical and cognitive performance. FASEB J. 30, 4021–4032 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Newman, J. C. et al. Ketogenic diet reduces midlife mortality and improves memory in aging mice. Cell Metab. 26, 547–557 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Kashiwaya, Y. et al. A ketone ester diet exhibits anxiolytic and cognition-sparing properties, and lessens amyloid and tau pathologies in a mouse model of Alzheimer’s disease. Neurobiol. Aging 34, 1530–1539 (2013).

    Article  CAS  PubMed  Google Scholar 

  146. Dani, N. et al. A cellular and spatial map of the choroid plexus across brain ventricles and ages. Cell 184, 3056–3074 (2021).

  147. Baruch, K. et al. Aging-induced type I interferon response at the choroid plexus negatively affects brain function. Science 346, 89–93 (2014).

  148. Baird, G. S. et al. Age-dependent changes in the cerebrospinal fluid proteome by slow off-rate modified aptamer array. Am. J. Pathol. 180, 446–456 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Silva-Vargas, V., Maldonado-Soto, A. R., Mizrak, D., Codega, P. & Doetsch, F. Age-dependent niche signals from the choroid plexus regulate adult neural stem cells. Cell Stem Cell 19, 643–652 (2016).

    Article  CAS  PubMed  Google Scholar 

  150. Iram, T. et al. Young CSF restores oligodendrogenesis and memory in aged mice via Fgf17. Nature 605, 509–515 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Simons Foundation (S.A.V.), the Larry L. Hillblom Foundation (G.B.) and the National Institute on Aging (AG064823 (A.B.S.), AG077770 (S.A.V.), AG067740 (S.A.V.)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saul A. Villeda.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Neuroscience thanks Fernanda De Felice and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bieri, G., Schroer, A.B. & Villeda, S.A. Blood-to-brain communication in aging and rejuvenation. Nat Neurosci 26, 379–393 (2023). https://doi.org/10.1038/s41593-022-01238-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-022-01238-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing