Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Amygdala intercalated cells form an evolutionarily conserved system orchestrating brain networks

Abstract

The amygdala attributes valence and emotional salience to environmental stimuli and regulates how these stimuli affect behavior. Within the amygdala, a distinct class of evolutionarily conserved neurons form the intercalated cell (ITC) clusters, mainly located around the boundaries of the lateral and basal nuclei. Here, we review the anatomical, physiological and molecular characteristics of ITCs, and detail the organization of ITC clusters and their connectivity with one another and other brain regions. We describe how ITCs undergo experience-dependent plasticity and discuss emerging evidence demonstrating how ITCs are innervated and functionally regulated by neuromodulatory systems. We summarize recent findings showing that experience alters the balance of activity between different ITC clusters, thereby determining prevailing behavioral output. Finally, we propose a model in which ITCs form a key system for integrating divergent inputs and orchestrating brain-wide circuits to generate behavioral states attuned to current environmental circumstances and internal needs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ITCs gate information flow within the amygdala.
Fig. 2: Organization of the ITC network and conservation across species.
Fig. 3: Cellular and molecular features of ITCs.
Fig. 4: Connectivity of the ITC network.
Fig. 5: Previous and extended models of ITC network function.

Similar content being viewed by others

Data availability

Data sharing is not applicable—no new data were generated.

References

  1. Duvarci, S. & Pare, D. Amygdala microcircuits controlling learned fear. Neuron 82, 966–980 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Janak, P. H. & Tye, K. M. From circuits to behaviour in the amygdala. Nature 517, 284–292 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Grundemann, J. & Luthi, A. Ensemble coding in amygdala circuits for associative learning. Curr. Opin. Neurobiol. 35, 200–206 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Crosby, E. C. & Humphrey, T. Studies of the vertebrate telencephalon. II. The nuclear pattern of the anterior olfactory nucleus, tuberculum olfactorium and the amygdaloid complex in adult man. J. Comp. Neurol. 74, 309–352 (1941).

    Article  Google Scholar 

  5. Millhouse, O. E. The intercalated cells of the amygdala. J. Comp. Neurol. 247, 246–271 (1986).

    Article  CAS  PubMed  Google Scholar 

  6. Palomares-Castillo, E. et al. The intercalated paracapsular islands as a module for integration of signals regulating anxiety in the amygdala. Brain Res. 1476, 211–234 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Völsch, M. Zur vergleichenden Anatomie des Mandelkerns und seiner Nachbargebilde. Archiv. für. Mikroskopische Anat. 76, 373–523 (1910).

    Article  Google Scholar 

  8. Johnston, J. B. Further contributions to the study of the evolution of the forebrain. J. Comp. Neurol. 35, 337–481 (1923).

    Article  Google Scholar 

  9. Herry, C. et al. Neuronal circuits of fear extinction. Eur. J. Neurosci. 31, 599–612 (2010).

    Article  PubMed  Google Scholar 

  10. Pape, H. C. & Pare, D. Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Physiol. Rev. 90, 419–463 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Singewald, N. & Holmes, A. Rodent models of impaired fear extinction. Psychopharmacol. 236, 21–32 (2019).

    Article  CAS  Google Scholar 

  12. Maren, S. Seeking a spotless mind: extinction, deconsolidation, and erasure of fear memory. Neuron 70, 830–845 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pare, D., Quirk, G. J. & Ledoux, J. E. New vistas on amygdala networks in conditioned fear. J. Neurophysiol. 92, 1–9 (2004).

    Article  PubMed  Google Scholar 

  14. Likhtik, E., Popa, D., Apergis-Schoute, J., Fidacaro, G. A. & Pare, D. Amygdala intercalated neurons are required for expression of fear extinction. Nature 454, 642–645 (2008). By chemically lesioning the medial ITCs after training, this study provided causal evidence for a critical role for ITCs in expression of fear extinction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Berretta, S., Pantazopoulos, H., Caldera, M., Pantazopoulos, P. & Paré, D. Infralimbic cortex activation increases c-Fos expression in intercalated neurons of the amygdala. Neuroscience 132, 943–953 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Amir, A., Amano, T. & Pare, D. Physiological identification and infralimbic responsiveness of rat intercalated amygdala neurons. J. Neurophysiol. 105, 3054–3066 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Milad, M. R. & Quirk, G. J. Neurons in medial prefrontal cortex signal memory for fear extinction. Nature 420, 70–74 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Do-Monte, F. H., Manzano-Nieves, G., Quinones-Laracuente, K., Ramos-Medina, L. & Quirk, G. J. Revisiting the role of infralimbic cortex in fear extinction with optogenetics. J. Neurosci. 35, 3607–3615 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bukalo, O. et al. Prefrontal inputs to the amygdala instruct fear extinction memory formation. Sci. Adv. 1, e1500251 (2015).

    Article  PubMed  Google Scholar 

  20. Ehrlich, I. et al. Amygdala inhibitory circuits and the control of fear memory. Neuron 62, 757–771 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Hefner, K. et al. Impaired fear extinction learning and cortico-amygdala circuit abnormalities in a common genetic mouse strain. J. Neurosci. 28, 8074–8085 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Busti, D. et al. Different fear states engage distinct networks within the intercalated cell clusters of the amygdala. J. Neurosci. 31, 5131–5144 (2011). This study demonstrated differential engagement of ITCdm and ITCvm clusters in high and low fear states suggesting a new framework for their role in fear expression and extinction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huang, C. C., Chen, C. C., Liang, Y. C. & Hsu, K. S. Long-term potentiation at excitatory synaptic inputs to the intercalated cell masses of the amygdala. Int. J. Neuropsychopharmacol. 17, 1233–1242 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Asede, D., Bosch, D., Luthi, A., Ferraguti, F. & Ehrlich, I. Sensory inputs to intercalated cells provide fear-learning modulated inhibition to the basolateral amygdala. Neuron 86, 541–554 (2015). This study showed that neurons in the ITCdm cluster receive sensory inputs and are part of fear learning-modulated feedforward and feedback inhibitory circuits controlling amygdala input and output nuclei.

    Article  CAS  PubMed  Google Scholar 

  25. Hagihara, K. M. et al. Intercalated amygdala clusters orchestrate a switch in fear state. Nature 594, 403–407 (2021). This study revealed opposing functional roles for ITCdm and ITCvm clusters and provided evidence that through mutual intercluster inhibition, ITCs enable switching between high and low fear states via connections to distinct amygdala–cortical pathways.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Royer, S., Martina, M. & Paré, D. An inhibitory interface gates impulse traffic between the input and output stations of the amygdala. J. Neurosci. 19, 10575–10583 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Marowsky, A., Yanagawa, Y., Obata, K. & Vogt, K. E. A specialized subclass of interneurons mediates dopaminergic facilitation of amygdala function. Neuron 48, 1025–1037 (2005). This study identified ITCs as a substrate for DA-induced amygdala disinhibition via D1 receptor-dependent hyperpolarization.

    Article  CAS  PubMed  Google Scholar 

  28. Paré, D. & Smith, Y. The intercalated cell masses project to the central and medial nuclei of the amygdala in cats. Neuroscience 57, 1077–1090 (1993).

    Article  PubMed  Google Scholar 

  29. McDonald, A. J. & Augustine, J. R. Localization of GABA-like immunoreactivity in the monkey amygdala. Neuroscience 52, 281–294 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Zikopoulos, B., John, Y. J., Garcia-Cabezas, M. A., Bunce, J. G. & Barbas, H. The intercalated nuclear complex of the primate amygdala. Neuroscience 330, 267–290 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Braak, H. & Braak, E. Neuronal types in the basolateral amygdaloid nuclei of man. Brain Res. Bull. 11, 349–365 (1983).

    Article  CAS  PubMed  Google Scholar 

  32. Urban, S. & Yilmazer-Hanke, D. M. The pigmentarchitectonic divisions and neuronal types of the central nucleus and intercalated masses of the human amygdala. J. Hirnforsch. 39, 311–319 (1999).

    CAS  PubMed  Google Scholar 

  33. Collins, D. R. & Paré, D. Spontaneous and evoked activity of intercalated amygdala neurons. Eur. J. Neurosci. 11, 3441–3448 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Asede, D., Doddapaneni, D. & Bolton, M. M. Amygdala intercalated cells: gate keepers and conveyors of internal state to the circuits of emotion. J. Neurosci. 42, 9098–9109 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fuxe, K. et al. The dopamine D1 receptor-rich main and paracapsular intercalated nerve cell groups of the rat amygdala: relationship to the dopamine innervation. Neuroscience 119, 733–746 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Manko, M., Geracitano, R. & Capogna, M. Functional connectivity of the main intercalated nucleus of the mouse amygdala. J. Physiol. 589, 1911–1925 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gregoriou, G. C., Kissiwaa, S. A., Patel, S. D. & Bagley, E. E. Dopamine and opioids inhibit synaptic outputs of the main island of the intercalated neurons of the amygdala. Eur. J. Neurosci. 50, 2065–2074 (2019).

    Article  PubMed  Google Scholar 

  38. Biggs, L. M. & Meredith, M. Functional connectivity of intercalated nucleus with medial amygdala: a circuit relevant for chemosignal processing. IBRO Neurosci. Rep. 12, 170–181 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Aksoy-Aksel, A., Gall, A., Seewald, A., Ferraguti, F. & Ehrlich, I. Midbrain dopaminergic inputs gate amygdala intercalated cell clusters by distinct and cooperative mechanisms in male mice. eLife 10, e63708 (2021). This study demonstrated multiple mechanisms by which dopaminergic midbrain inputs can shift the activity balance between distinct ITC clusters and showed these effects are affected by extinction learning.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Strobel, C., Marek, R., Gooch, H. M., Sullivan, R. K. & Sah, P. Prefrontal and auditory input to intercalated neurons of the amygdala. Cell Rep. 10, 1435–1442 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Kwon, O. B. et al. Dopamine regulation of amygdala inhibitory circuits for expression of learned fear. Neuron 88, 378–389 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Geracitano, R., Kaufmann, W. A., Szabo, G., Ferraguti, F. & Capogna, M. Synaptic heterogeneity between mouse paracapsular intercalated neurons of the amygdala. J. Physiol. 585, 117–134 (2007). This study directly assessed inhibitory synaptic interactions between neighboring ITCs within a cluster (ITCdm), revealing a striking functional heterogeneity in their properties.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Royer, S., Martina, M. & Pare, D. Polarized synaptic interactions between intercalated neurons of the amygdala. J. Neurophysiol. 83, 3509–3518 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Kaoru, T. et al. Molecular characterization of the intercalated cell masses of the amygdala: implications for the relationship with the striatum. Neuroscience 166, 220–230 (2010). This study uncovered parallels in ontogenetic origin and molecular markers between ITCs and striatal medium spiny neurons.

    Article  CAS  PubMed  Google Scholar 

  45. Kuerbitz, J. et al. Temporally distinct roles for the zinc finger transcription factor Sp8 in the generation and migration of dorsal lateral ganglionic eminence (dLGE)-derived neuronal subtypes in the mouse. Cereb. Cortex 31, 1744–1762 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Geng, H. Y. et al. Erbb4 deletion from medium spiny neurons of the nucleus accumbens core induces schizophrenia-like behaviors via elevated GABAA receptor α1 subunit expression. J. Neurosci. 37, 7450–7464 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Asede, D., Okoh, J., Ali, S., Doddapaneni, D. & Bolton, M. M. Deletion of ErbB4 disrupts synaptic transmission and long-term potentiation of thalamic input to amygdalar medial paracapsular intercalated cells. Front. Synaptic Neurosci. 13, 697110 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Waclaw, R. R., Ehrman, L. A., Pierani, A. & Campbell, K. Developmental origin of the neuronal subtypes that comprise the amygdalar fear circuit in the mouse. J. Neurosci. 30, 6944–6953 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kuerbitz, J. et al. Loss of intercalated cells (ITCs) in the mouse amygdala of Tshz1 mutants correlates with fear, depression, and social interaction phenotypes. J. Neurosci. 38, 1160–1177 (2018). This study linked developmental disruption and loss of ITCs to not only fear extinction deficits, but also depression-like and impaired social behaviors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nitecka, L. & Ben-Ari, Y. Distribution of GABA-like immunoreactivity in the rat amygdaloid complex. J. Comp. Neurol. 266, 45–55 (1987).

    Article  CAS  PubMed  Google Scholar 

  51. Pare, D. & Smith, Y. GABAergic projection from the intercalated cell masses of the amygdala to the basal forebrain in cats. J. Comp. Neurol. 344, 33–49 (1994).

    Article  CAS  PubMed  Google Scholar 

  52. Pitkanen, A. & Amaral, D. The distribution of GABAergic cells, fibers, and terminals in the monkey amygdaloid complex: an immunohistochemical and in situ hybridization study. J. Neurosci. 14, 2200–2224 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pirker, S., Schwarzer, C., Wieselthaler, A., Sieghart, W. & Sperk, G. GABAA receptors: immunocytochemical distribution of 13 subunits in the adult rat brain. Neuroscience 101, 815–850 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Marowsky, A., Fritschy, J. M. & Vogt, K. E. Functional mapping of GABAA receptor subtypes in the amygdala. Eur. J. Neurosci. 20, 1281–1289 (2004).

    Article  PubMed  Google Scholar 

  55. Geracitano, R., Fischer, D., Kasugai, Y., Ferraguti, F. & Capogna, M. Functional expression of the GABAA receptor alpha2 and alpha3 subunits at synapses between intercalated medial paracapsular neurons of mouse amygdala. Front. Neural Circuits 6, 32 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sperk, G. et al. Immunohistochemical distribution of 10 GABAA receptor subunits in the forebrain of the rhesus monkey Macaca mulatta. J. Comp. Neurol. 528, 2551–2568 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Marowsky, A. & Vogt, K. E. Delta-subunit-containing GABAA-receptors mediate tonic inhibition in paracapsular cells of the mouse amygdala. Front. Neural Circuits 8, 27 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Mar, L., Yang, F. C. & Ma, Q. Genetic marking and characterization of Tac2-expressing neurons in the central and peripheral nervous system. Mol. Brain 5, 3 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Poulin, J. F., Chevalier, B., Laforest, S. & Drolet, G. Enkephalinergic afferents of the centromedial amygdala in the rat. J. Comp. Neurol. 496, 859–876 (2006).

    Article  PubMed  Google Scholar 

  60. Winters, B. L. et al. Endogenous opioids regulate moment-to-moment neuronal communication and excitability. Nat. Commun. 8, 14611 (2017). This study showed that endogenous opioid release by ITCs themselves upon moderate activity can regulate their input strength and excitability.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wood, J. et al. Structure and function of the amygdaloid NPY system: NPY Y2 receptors regulate excitatory and inhibitory synaptic transmission in the centromedial amygdala. Brain Struct. Funct. 221, 3373–3391 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. van den Burg, E. H. & Stoop, R. Neuropeptide signalling in the central nucleus of the amygdala. Cell Tissue Res. 375, 93–101 (2019).

    Article  PubMed  Google Scholar 

  63. Hajos, N. Interneuron types and their circuits in the basolateral amygdala. Front. Neural Circuits 15, 687257 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Capogna, M. GABAergic cell type diversity in the basolateral amygdala. Curr. Opin. Neurobiol. 26C, 110–116 (2014).

    Article  Google Scholar 

  65. Strobel, C., Sullivan, R. K. P., Stratton, P. & Sah, P. Calcium signalling in medial intercalated cell dendrites and spines. J. Physiol. 595, 5653–5669 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dabrowska, J. & Rainnie, D. G. Expression and distribution of Kv4 potassium channel subunits and potassium channel interacting proteins in subpopulations of interneurons in the basolateral amygdala. Neuroscience 171, 721–733 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Jacobsen, K. X., Hoistad, M., Staines, W. A. & Fuxe, K. The distribution of dopamine D1 receptor and mu-opioid receptor 1 receptor immunoreactivities in the amygdala and interstitial nucleus of the posterior limb of the anterior commissure: relationships to tyrosine hydroxylase and opioid peptide terminal systems. Neuroscience 141, 2007–2018 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Hill, J. E. & Gasser, P. J. Organic cation transporter 3 is densely expressed in the intercalated cell groups of the amygdala: anatomical evidence for a stress hormone-sensitive dopamine clearance system. J. Chem. Neuroanat. 52, 36–43 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Pinto, A. & Sesack, S. R. Ultrastructural analysis of prefrontal cortical inputs to the rat amygdala: spatial relationships to presumed dopamine axons and D1 and D2 receptors. Brain Struct. Funct. 213, 159–175 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. de la Mora, M. P., Gallegos-Cari, A., Arizmendi-Garcia, Y., Marcellino, D. & Fuxe, K. Role of dopamine receptor mechanisms in the amygdaloid modulation of fear and anxiety: structural and functional analysis. Prog. Neurobiol. 90, 198–216 (2010).

    Article  PubMed  Google Scholar 

  71. Yilmazer-Hanke, D. M. Chapter 22 - Amygdala. in The Human Nervous System (Third Edition) (eds. J. K. Mai et al.) 759–834 (Academic Press, 2012).

  72. O’Leary, T. P. et al. Extensive and spatially variable within-cell-type heterogeneity across the basolateral amygdala. eLife 9, e59003 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Royer, S., Martina, M. & Pare, D. Bistable behavior of inhibitory neurons controlling impulse traffic through the amygdala: role of a slowly deinactivating K+ current. J. Neurosci. 20, 9034–9039 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Asede, D. et al. Apical intercalated cell cluster: A distinct sensory regulator in the amygdala. Cell Rep. 35, 109151 (2021). This study identified the ITCap cluster as an inhibitory relay between multiple cortical and thalamic inputs and outputs to lateral amygdala and dorsal striatum.

    Article  CAS  PubMed  Google Scholar 

  75. Royer, S. & Paré, D. Conservation of total synaptic weight through balanced synaptic depression and potentiation. Nature 422, 518–522 (2003). This study showed that activity-dependent plasticity of ITC glutamatergic inputs lead to coordinated changes in synaptic strength that could serve to maintain overall synaptic weights.

    Article  CAS  PubMed  Google Scholar 

  76. Jüngling, K. et al. Neuropeptide S-mediated control of fear expression and extinction: role of intercalated GABAergic neurons in the amygdala. Neuron 59, 298–310 (2008). This study suggests that the anxiolytic and extinction-enhancing effects of endogenous NPS are mediated by modulation of inputs to ITCs.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Blaesse, P. et al. μ-opioid receptor-mediated inhibition of intercalated neurons and effect on synaptic transmission to the central amygdala. J. Neurosci. 35, 7317–7325 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rajbhandari, A. K. et al. A basomedial amygdala to intercalated cells microcircuit expressing PACAP and its receptor PAC1 regulates contextual fear. J. Neurosci. 41, 3446–3461 (2021). This study revealed a sexually dimorphic function of a basomedial amygdala to ITC circuit that co-releases PACAP in regulating fear generalization and extinction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Silberman, Y., Ariwodola, O. J., Chappell, A. M., Yorgason, J. T. & Weiner, J. L. Lateral paracapsular GABAergic synapses in the basolateral amygdala contribute to the anxiolytic effects of beta 3 adrenoceptor activation. Neuropsychopharmacology 35, 1886–1896 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gregoriou, G. C., Patel, S. D., Pyne, S., Winters, B. L. & Bagley, E. E. Opioid withdrawal abruptly disrupts amygdala circuit function by reducing peptide actions. J. Neurosci. 43, 1668–1681 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Senn, V. et al. Long-range connectivity defines behavioral specificity of amygdala neurons. Neuron 81, 428–437 (2014).

    Article  CAS  PubMed  Google Scholar 

  82. Tovote, P. et al. Midbrain circuits for defensive behaviour. Nature 534, 206–212 (2016).

    Article  CAS  PubMed  Google Scholar 

  83. Ghashghaei, H. T. & Barbas, H. Pathways for emotion: interactions of prefrontal and anterior temporal pathways in the amygdala of the rhesus monkey. Neuroscience 115, 1261–1279 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Moga, M. M. & Gray, T. S. Evidence for corticotropin-releasing factor, neurotensin, and somatostatin in the neural pathway from the central nucleus of the amygdala to the parabrachial nucleus. J. Comp. Neurol. 241, 275–284 (1985).

    Article  CAS  PubMed  Google Scholar 

  85. Stern, D. B., Wilke, A. & Root, C. M. Anatomical connectivity of the intercalated cells of the amygdala. eNeuro 10, ENEURO.0238-23.2023 (2023).

  86. Milad, M. R., Vidal-Gonzalez, I. & Quirk, G. J. Electrical stimulation of medial prefrontal cortex reduces conditioned fear in a temporally specific manner. Behav. Neurosci. 118, 389–394 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. McDonald, A. J., Mascagni, F. & Guo, L. Projections of the medial and lateral prefrontal cortices to the amygdala: a Phaseolus vulgaris leucoagglutinin study in the rat. Neuroscience 71, 55–75 (1996).

    Article  CAS  PubMed  Google Scholar 

  88. Vertes, R. P. Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 51, 32–58 (2004).

  89. Pinard, C. R., Mascagni, F. & McDonald, A. J. Medial prefrontal cortical innervation of the intercalated nuclear region of the amygdala. Neuroscience 205, 112–124 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Dobi, A. et al. Neural substrates for the distinct effects of presynaptic group III metabotropic glutamate receptors on extinction of contextual fear conditioning in mice. Neuropharmacology 66, 274–289 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Freedman, L. J., Insel, T. R. & Smith, Y. Subcortical projections of area 25 (subgenual cortex) of the macaque monkey. J. Comp. Neurol. 421, 172–188 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Zikopoulos, B., Hoistad, M., John, Y. & Barbas, H. Posterior orbitofrontal and anterior cingulate pathways to the amygdala target inhibitory and excitatory systems with opposite functions. J. Neurosci. 37, 5051–5064 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Cho, J. H., Deisseroth, K. & Bolshakov, V. Y. Synaptic encoding of fear extinction in mPFC-amygdala circuits. Neuron 80, 1491–1507 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Adhikari, A. et al. Basomedial amygdala mediates top-down control of anxiety and fear. Nature 527, 179–185 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bazelot, M. et al. Hippocampal theta input to the amygdala shapes feedforward inhibition to gate heterosynaptic plasticity. Neuron 87, 1290–1303 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Tovote, P., Fadok, J. P. & Luthi, A. Neuronal circuits for fear and anxiety. Nat. Rev. Neurosci. 16, 317–331 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. Ciocchi, S. et al. Encoding of conditioned fear in central amygdala inhibitory circuits. Nature 468, 277–282 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Li, H. et al. Experience-dependent modification of a central amygdala fear circuit. Nat. Neurosci. 16, 332–339 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Whittle, N. et al. Central amygdala micro-circuits mediate fear extinction. Nat. Commun. 12, 4156 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Royer, S. & Paré, D. Bidirectional synaptic plasticity in intercalated amygdala neurons and the extinction of conditioned fear responses. Neuroscience 115, 455–462 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Seewald, A. et al. Fear memory retrieval is associated with a reduction in AMPA receptor density at thalamic to amygdala intercalated cell synapses. Front. Synaptic Neurosci. 13, 634558 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Morozov, A., Sukato, D. & Ito, W. Selective suppression of plasticity in amygdala inputs from temporal association cortex by the external capsule. J. Neurosci. 31, 339–345 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Skelly, M. J., Chappell, A. M., Ariwodola, O. J. & Weiner, J. L. Behavioral and neurophysiological evidence that lateral paracapsular GABAergic synapses in the basolateral amygdala contribute to the acquisition and extinction of fear learning. Neurobiol. Learn Mem. 127, 10–16 (2016).

    Article  CAS  PubMed  Google Scholar 

  104. Skelly, M. J., Ariwodola, O. J. & Weiner, J. L. Fear conditioning selectively disrupts noradrenergic facilitation of GABAergic inhibition in the basolateral amygdala. Neuropharmacology 113, 231–240 (2017).

    Article  CAS  PubMed  Google Scholar 

  105. Amano, T., Unal, C. T. & Pare, D. Synaptic correlates of fear extinction in the amygdala. Nat. Neurosci. 13, 489–494 (2010). This study demonstrated extinction-driven synaptic plasticity of ITCs and showed that infralimbic-dependent potentiation of BLA inputs to ITCs drives increased inhibition of fear output neurons in CeA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. An, B. et al. Amount of fear extinction changes its underlying mechanisms. eLife 6, e25224 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Knapska, E. & Maren, S. Reciprocal patterns of c-Fos expression in the medial prefrontal cortex and amygdala after extinction and renewal of conditioned fear. Learn Mem. 16, 486–493 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Whittle, N., Hauschild, M., Lubec, G., Holmes, A. & Singewald, N. Rescue of impaired fear extinction and normalization of cortico-amygdala circuit dysfunction in a genetic mouse model by dietary zinc restriction. J. Neurosci. 30, 13586–13596 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Dorofeikova, M. et al. Effects of footshock stress on social behavior and neuronal activation in the medial prefrontal cortex and amygdala of male and female mice. PLoS ONE 18, e0281388 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Gouty, S., Silveira, J. T., Cote, T. E. & Cox, B. M. Aversive stress reduces mu opioid receptor expression in the intercalated nuclei of the rat amygdala. Cell Mol. Neurobiol. 41, 1119–1129 (2021).

    Article  CAS  PubMed  Google Scholar 

  111. Becker, J. A. et al. Autistic-like syndrome in mu opioid receptor null mice is relieved by facilitated mGluR4 activity. Neuropsychopharmacology 39, 2049–2060 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhang, X., Kiyokawa, Y. & Takeuchi, Y. Mapping of c-Fos expression in the medial amygdala following social buffering in male rats. Behav. Brain Res 422, 113746 (2022).

    Article  PubMed  Google Scholar 

  113. Minami, S., Kiyokawa, Y. & Takeuchi, Y. The lateral intercalated cell mass of the amygdala is activated during social buffering of conditioned fear responses in male rats. Behav. Brain Res. 372, 112065 (2019).

    Article  PubMed  Google Scholar 

  114. St. Laurent, R. et al. Intercalated amygdala dysfunction drives extinction deficits in the Sapap3 mouse model of obsessive-compulsive disorder. Biol. Psychiatry https://doi.org/10.1016/j.biopsych.2024.10.021 (2024).

  115. Hagihara, K. M. & Luthi, A. Bidirectional valence coding in amygdala intercalated clusters: a neural substrate for the opponent-process theory of motivation. Neurosci. Res. https://doi.org/10.1016/j.neures.2024.07.003 (2024).

  116. Likhtik, E. & Johansen, J. P. Neuromodulation in circuits of aversive emotional learning. Nat. Neurosci. 22, 1586–1597 (2019).

    Article  CAS  PubMed  Google Scholar 

  117. Bromberg-Martin, E. S., Matsumoto, M. & Hikosaka, O. Dopamine in motivational control: rewarding, aversive, and alerting. Neuron 68, 815–834 (2010).

    Article  CAS  PubMed  Google Scholar 

  118. Salinas-Hernandez, X. I. et al. Dopamine neurons drive fear extinction learning by signaling the omission of expected aversive outcomes. eLife 7, e38818 (2018).

    Article  PubMed  Google Scholar 

  119. Lee, J. H., Lee, S. & Kim, J. H. Amygdala circuits for fear memory: a key role for dopamine regulation. Neuroscientist 23, 542–553 (2017).

    Article  CAS  PubMed  Google Scholar 

  120. Asan, E. The catecholaminergic innervation of the rat amygdala. Adv. Anat. Embryol. Cell Biol. 142, 1–118 (1998).

    Article  CAS  PubMed  Google Scholar 

  121. Asan, E. Ultrastructural features of tyrosine-hydroxylase-immunoreactive afferents and their targets in the rat amygdala. Cell Tissue Res. 288, 449–469 (1997).

    Article  CAS  PubMed  Google Scholar 

  122. Ferrazzo, S. et al. Increased anxiety-like behavior following circuit-specific catecholamine denervation in mice. Neurobiol. Dis. 125, 55–66 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Tritsch, N. X., Ding, J. B. & Sabatini, B. L. Dopaminergic neurons inhibit striatal output through non-canonical release of GABA. Nature 490, 262–266 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Mingote, S. et al. Functional connectome analysis of dopamine neuron glutamatergic connections in forebrain regions. J. Neurosci. 35, 16259–16271 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Lutas, A. et al. State-specific gating of salient cues by midbrain dopaminergic input to basal amygdala. Nat. Neurosci. 22, 1820–1833 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. McCall, J. G. et al. Locus coeruleus to basolateral amygdala noradrenergic projections promote anxiety-like behavior. eLife 6, e18247 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Roozendaal, B. et al. Basolateral amygdala noradrenergic activity mediates corticosterone-induced enhancement of auditory fear conditioning. Neurobiol. Learn Mem. 86, 249–255 (2006).

    Article  CAS  PubMed  Google Scholar 

  128. Asan, E., Steinke, M. & Lesch, K. P. Serotonergic innervation of the amygdala: targets, receptors, and implications for stress and anxiety. Histochem. Cell Biol. 139, 785–813 (2013).

    Article  CAS  PubMed  Google Scholar 

  129. Linley, S. B., Olucha-Bordonau, F. & Vertes, R. P. Pattern of distribution of serotonergic fibers to the amygdala and extended amygdala in the rat. J. Comp. Neurol. 525, 116–139 (2017).

    Article  CAS  PubMed  Google Scholar 

  130. O’Rourke, H. & Fudge, J. L. Distribution of serotonin transporter labeled fibers in amygdaloid subregions: implications for mood disorders. Biol. Psychiatry 60, 479–490 (2006).

    Article  PubMed  Google Scholar 

  131. Poulin, J.-F., Castonguay-Lebel, Z., Laforest, S. & Drolet, G. Enkephalin co-expression with classic neurotransmitters in the amygdaloid complex of the rat. J. Comp. Neurol. 506, 943–959 (2008).

    Article  CAS  PubMed  Google Scholar 

  132. Gregoriou, G. C., Patel, S. D., Winters, B. L. & Bagley, E. E. Neprilysin controls the synaptic activity of neuropeptides in the intercalated cells of the amygdala. Mol. Pharmacol. 98, 454–461 (2020).

    Article  CAS  PubMed  Google Scholar 

  133. Clark, S. D. et al. Anatomical characterization of the neuropeptide S system in the mouse brain by in situ hybridization and immunohistochemistry. J. Comp. Neurol. 519, 1867–1893 (2011).

    Article  CAS  PubMed  Google Scholar 

  134. Neugebauer, V. et al. Amygdala, neuropeptides, and chronic pain-related affective behaviors. Neuropharmacology 170, 108052 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Chauveau, F. et al. Prevention of stress-impaired fear extinction through neuropeptide S action in the lateral amygdala. Neuropsychopharmacology 37, 1588–1599 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ren, W. et al. Neuropeptide S: a novel regulator of pain-related amygdala plasticity and behaviors. J. Neurophysiol. 110, 1765–1781 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Medina, G., Ji, G., Grégoire, S. & Neugebauer, V. Nasal application of neuropeptide S inhibits arthritis pain-related behaviors through an action in the amygdala. Mol. Pain. 10, 32 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Ressler, K. J. et al. Post-traumatic stress disorder is associated with PACAP and the PAC1 receptor. Nature 470, 492–497 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Pérez de la Mora, M. et al. Role of the amygdaloid cholecystokinin (CCK)/gastrin-2 receptors and terminal networks in the modulation of anxiety in the rat. Effects of CCK-4 and CCK-8S on anxiety-like behaviour and [3H]GABA release. Eur. J. Neurosci. 26, 3614–3630 (2007).

    Article  PubMed  Google Scholar 

  140. Narvaez, M. et al. A novel integrative mechanism in anxiolytic behavior induced by galanin 2/neuropeptide Y Y1 receptor interactions on medial paracapsular intercalated amygdala in rats. Front. Cell Neurosci. 12, 119 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Narvaez, M. et al. Galanin receptor 2-neuropeptide Y Y1 receptor interactions in the amygdala lead to increased anxiolytic actions. Brain Struct. Funct. 220, 2289–2301 (2015).

    Article  CAS  PubMed  Google Scholar 

  142. Izquierdo, A., Brigman, J. L., Radke, A. K., Rudebeck, P. H. & Holmes, A. The neural basis of reversal learning: an updated perspective. Neuroscience 345, 12–26 (2017).

    Article  CAS  PubMed  Google Scholar 

  143. Meins, M. et al. Impaired fear extinction in mice lacking protease nexin-1. Eur. J. Neurosci. 31, 2033–2042 (2010).

    Article  PubMed  Google Scholar 

  144. Zangrandi, L. et al. Loss of mGluR5 in D1 receptor-expressing neurons improves stress coping. Int. J. Mol. Sci. 22, 7826 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Bienvenu, T. C. et al. Large intercalated neurons of amygdala relay noxious sensory information. J. Neurosci. 35, 2044–2057 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Zussy, C. et al. Dynamic modulation of inflammatory pain-related affective and sensory symptoms by optical control of amygdala metabotropic glutamate receptor 4. Mol. Psychiatry 23, 509–520 (2018).

    Article  CAS  PubMed  Google Scholar 

  147. Burke, D. A., Rotstein, H. G. & Alvarez, V. A. Striatal local circuitry: a new framework for lateral inhibition. Neuron 96, 267–284 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Bariselli, S., Fobbs, W. C., Creed, M. C. & Kravitz, A. V. A competitive model for striatal action selection. Brain Res. 1713, 70–79 (2019).

    Article  CAS  PubMed  Google Scholar 

  149. Klaus, A., Alves da Silva, J. & Costa, R. M. What, if, and when to move: basal ganglia circuits and self-paced action initiation. Annu. Rev. Neurosci. 42, 459–483 (2019).

    Article  CAS  PubMed  Google Scholar 

  150. Lanciego, J. L., Luquin, N. & Obeso, J. A. Functional neuroanatomy of the basal ganglia. Cold Spring Harb. Perspect. Med. 2, a009621 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: A.A.-A., F.F., A.H., A.L. and I.E. Supervision: I.E. Visualization: A.A.-A., F.F. and I.E. All authors participated in writing the original draft and in reviewing and editing the final version of the manuscript.

Corresponding author

Correspondence to Ingrid Ehrlich.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Neuroscience thanks Pankaj Sah and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aksoy-Aksel, A., Ferraguti, F., Holmes, A. et al. Amygdala intercalated cells form an evolutionarily conserved system orchestrating brain networks. Nat Neurosci 28, 234–247 (2025). https://doi.org/10.1038/s41593-024-01836-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-024-01836-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing