Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Integrating multimodal data to understand cortical circuit architecture and function

Abstract

In recent years there has been a tremendous growth in new technologies that allow large-scale investigation of different characteristics of the nervous system at an unprecedented level of detail. There is a growing trend to use combinations of these new techniques to determine direct links between different modalities. In this Perspective, we focus on the mouse visual cortex, as this is one of the model systems in which much progress has been made in the integration of multimodal data to advance understanding. We review several approaches that allow integration of data regarding various properties of cortical cell types, connectivity at the level of brain areas, cell types and individual cells, and functional neural activity in vivo. The increasingly crucial contributions of computation and theory in analyzing and systematically modeling data are also highlighted. Together with open sharing of data, tools and models, integrative approaches are essential tools in modern neuroscience for improving our understanding of the brain architecture, mechanisms and function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Integration of transcriptomics, morphology and intrinsic electrophysiological properties via the Patch-seq technology.
Fig. 2: Integrating cell types and local connectivity.
Fig. 3: Distinct functional properties of transgenically defined cell types.
Fig. 4: Integration of connectivity and in vivo function.
Fig. 5: Integration of physiology with brain-wide connectivity.
Fig. 6: Integration of data in models.

Similar content being viewed by others

Data availability

No primary data were generated for this paper.

References

  1. Yuste, R. et al. A community-based transcriptomics classification and nomenclature of neocortical cell types. Nat. Neurosci. 23, 1456–1468 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ramón y Cajal, S. Histologie Du Système Nerveux de l’homme & Des Vertébrés (A. Maloine Editeurs, Paris, 1909).

    Book  Google Scholar 

  3. Petilla Interneuron Nomenclature Group. et al. Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat. Rev. Neurosci. 9, 557–568 (2008).

    Article  Google Scholar 

  4. Gilbert, C. D. & Wiesel, T. N. Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex. Nature 280, 120–125 (1979).

    Article  CAS  PubMed  Google Scholar 

  5. Gouwens, N. W. et al. Classification of electrophysiological and morphological neuron types in the mouse visual cortex. Nat. Neurosci. 22, 1182–1195 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jones, E. G. Varieties and distribution of non-pyramidal cells in the somatic sensory cortex of the squirrel monkey. J. Comp. Neurol. 160, 205–267 (1975).

    Article  CAS  PubMed  Google Scholar 

  7. Kanari, L. et al. Objective morphological classification of neocortical pyramidal cells. Cereb. Cortex 29, 1719–1735 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Martin, K. A. & Whitteridge, D. Form, function and intracortical projections of spiny neurones in the striate visual cortex of the cat. J. Physiol. 353, 463–504 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Peters, A. & Feldman, M. L. The projection of the lateral geniculate nucleus to area 17 of the rat cerebral cortex. I. General description. J. Neurocytol. 5, 63–84 (1976).

    Article  CAS  PubMed  Google Scholar 

  10. Tasic, B. et al. Shared and distinct transcriptomic cell types across neocortical areas. Nature 563, 72–78 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. de Vries, S. E. J. et al. A large-scale standardized physiological survey reveals functional organization of the mouse visual cortex. Nat. Neurosci. 23, 138–151 (2020).

    Article  PubMed  Google Scholar 

  12. Wang, Y. et al. Anatomical, physiological and molecular properties of Martinotti cells in the somatosensory cortex of the juvenile rat. J. Physiol. 561, 65–90 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang, M. et al. Molecularly defined and spatially resolved cell atlas of the whole mouse brain. Nature 624, 343–354 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yao, Z. et al. A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse brain. Nature 624, 317–332 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. MICrONS Consortium et al. Functional connectomics spanning multiple areas of mouse visual cortex. Preprint at bioRxiv https://doi.org/10.1101/2021.07.28.454025 (2021).

  16. Yin, W. et al. A petascale automated imaging pipeline for mapping neuronal circuits with high-throughput transmission electron microscopy. Nat. Commun. 11, 4949 (2020).

  17. Shapson-Coe, A. et al. A petavoxel fragment of human cerebral cortex reconstructed at nanoscale resolution. Science 384, eadk4858 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cadwell, C. R. et al. Electrophysiological, transcriptomic and morphologic profiling of single neurons using Patch-seq. Nat. Biotechnol. 34, 199–203 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Földy, C. et al. Single-cell RNAseq reveals cell adhesion molecule profiles in electrophysiologically defined neurons. Proc. Natl Acad. Sci. USA 113, E5222–E5231 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Göbel, W. & Helmchen, F. In vivo calcium imaging of neural network function. Physiology 22, 358–365 (2007).

    Article  PubMed  Google Scholar 

  21. Looger, L. L. & Griesbeck, O. Genetically encoded neural activity indicators. Curr. Opin. Neurobiol. 22, 18–23 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Knöpfel, T. Genetically encoded optical indicators for the analysis of neuronal circuits. Nat. Rev. Neurosci. 13, 687–700 (2012).

    Article  PubMed  Google Scholar 

  23. Kim, C. K., Adhikari, A. & Deisseroth, K. Integration of optogenetics with complementary methodologies in systems neuroscience. Nat. Rev. Neurosci. 18, 222–235 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yizhar, O., Fenno, L. E., Davidson, T. J., Mogri, M. & Deisseroth, K. Optogenetics in neural systems. Neuron 71, 9–34 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Steinmetz, N. A., Koch, C., Harris, K. D. & Carandini, M. Challenges and opportunities for large-scale electrophysiology with Neuropixels probes. Curr. Opin. Neurobiol. 50, 92–100 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Urai, A. E., Doiron, B., Leifer, A. M. & Churchland, A. K. Large-scale neural recordings call for new insights to link brain and behavior. Nat. Neurosci. 25, 11–19 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Alivisatos, A. P. et al. Nanotools for neuroscience and brain activity mapping. ACS Nano 7, 1850–1866 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Demas, J. et al. High-speed, cortex-wide volumetric recording of neuroactivity at cellular resolution using light beads microscopy. Nat. Methods 18, 1103–1111 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim, T. H. & Schnitzer, M. J. Fluorescence imaging of large-scale neural ensemble dynamics. Cell 185, 9–41 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Einevoll, G. T. et al. The scientific case for brain simulations. Neuron 102, 735–744 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Haufler, D., Ito, S., Koch, C. & Arkhipov, A. Simulations of cortical networks using spatially extended conductance-based neuronal models. J. Physiol. https://doi.org/10.1113/JP284030 (2022).

    Article  Google Scholar 

  32. Koch, C. & Jones, A. Big science, team science, and open science for neuroscience. Neuron 92, 612–616 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Wiener, M., Sommer, F. T., Ives, Z. G., Poldrack, R. A. & Litt, B. Enabling an open data ecosystem for the neurosciences. Neuron 92, 929 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Vogelstein, J. T. et al. To the cloud! A grassroots proposal to accelerate brain science discovery. Neuron 92, 622–627 (2016).

    Article  PubMed Central  Google Scholar 

  35. Hawrylycz, M. et al. A guide to the BRAIN Initiative Cell census network data ecosystem. PLoS Biol. 21, e3002133 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Scala, F. et al. Layer 4 of mouse neocortex differs in cell types and circuit organization between sensory areas. Nat. Commun. 10, 4174 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Beerens, S., Winterer, J., Lukacsovich, D., Földy, C. & Wozny, C. Transcriptomically-guided pharmacological experiments in neocortical and hippocampal NPY-positive GABAergic interneurons. eNeuro 9, https://doi.org/10.1523/ENEURO.0005-22.2022 (2022).

  38. Scala, F. et al. Phenotypic variation of transcriptomic cell types in mouse motor cortex. Nature 598, 144–150 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Gouwens, N. W. et al. Integrated morphoelectric and transcriptomic classification of cortical GABAergic cells. Cell 183, 935–953 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rudy, B., Fishell, G., Lee, S. & Hjerling-Leffler, J. Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons. Dev. Neurobiol. 71, 45–61 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zhang, M. et al. Spatially resolved cell atlas of the mouse primary motor cortex by MERFISH. Nature 598, 137–143 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gray, E. G. Electron microscopy of synaptic contacts on dendrite spines of the cerebral cortex. Nature 183, 1592–1593 (1959).

    Article  CAS  PubMed  Google Scholar 

  43. Colonnier, M. Synaptic patterns on different cell types in the different laminae of the cat visual cortex. An electron microscope study. Brain Res. 9, 268–287 (1968).

    Article  CAS  PubMed  Google Scholar 

  44. Peters, A., Proskauer, C. C. & Ribak, C. E. Chandelier cells in rat visual cortex. J. Comp. Neurol. 206, 397–416 (1982).

    Article  CAS  PubMed  Google Scholar 

  45. Szentágothai, J. & Arbib, M. A. Conceptual models of neural organization. Neurosci. Res. Program Bull. 12, 305–510 (1974).

    PubMed  Google Scholar 

  46. DeFelipe, J., Hendry, S. H., Jones, E. G. & Schmechel, D. Variability in the terminations of GABAergic chandelier cell axons on initial segments of pyramidal cell axons in the monkey sensory-motor cortex. J. Comp. Neurol. 231, 364–384 (1985).

    Article  CAS  PubMed  Google Scholar 

  47. Fairén, A. & Valverde, F. A specialized type of neuron in the visual cortex of cat: a Golgi and electron microscope study of chandelier cells. J. Comp. Neurol. 194, 761–779 (1980).

    Article  PubMed  Google Scholar 

  48. Somogyi, P. A specific ‘axo-axonal’ interneuron in the visual cortex of the rat. Brain Res. 136, 345–350 (1977).

    Article  CAS  PubMed  Google Scholar 

  49. Lu, J. et al. Selective inhibitory control of pyramidal neuron ensembles and cortical subnetworks by chandelier cells. Nat. Neurosci. 20, 1377–1383 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Schneider-Mizell, C. M. et al. Structure and function of axo-axonic inhibition. Elife 10, e73783 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Seignette, K. et al. Experience shapes chandelier cell function and structure in the visual cortex. Elife 12, RP91153 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  52. de Lima, A. D. & Morrison, J. H. Ultrastructural analysis of somatostatin-immunoreactive neurons and synapses in the temporal and occipital cortex of the macaque monkey. J. Comp. Neurol. 283, 212–227 (1989).

    Article  PubMed  Google Scholar 

  53. Meinecke, D. L. & Peters, A. Somatostatin immunoreactive neurons in rat visual cortex: a light and electron microscopic study. J. Neurocytol. 15, 121–136 (1986).

    Article  CAS  PubMed  Google Scholar 

  54. Peters, A. The axon terminals of vasoactive intestinal polypeptide (VIP)-containing bipolar cells in rat visual cortex. J. Neurocytol. 19, 672–685 (1990).

    Article  CAS  PubMed  Google Scholar 

  55. Peters, A., Meinecke, D. L. & Karamanlidis, A. N. Vasoactive intestinal polypeptide immunoreactive neurons in the primary visual cortex of the cat. J. Neurocytol. 16, 23–38 (1987).

    Article  CAS  PubMed  Google Scholar 

  56. Buchanan, J. et al. Oligodendrocyte precursor cells ingest axons in the mouse neocortex. Proc. Natl Acad. Sci. USA 119, e2202580119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bonney, S. K. et al. Public volume electron microscopy data: an essential resource to study the brain microvasculature. Front. Cell Dev. Biol. 10, 849469 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Schneider-Mizell, C. M. et al. Inhibitory specificity from a connectomic census of mouse visual cortex. Nature (in the press).

  59. Kim, E. J., Juavinett, A. L., Kyubwa, E. M., Jacobs, M. W. & Callaway, E. M. Three types of cortical layer 5 neurons that differ in brain-wide connectivity and function. Neuron 88, 1253–1267 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wu, S. J. et al. Cortical somatostatin interneuron subtypes form cell-type-specific circuits. Neuron 111, 2675–2692 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gamlin, C. R. et al. Connectomics of predicted Sst transcriptomic types in mouse visual cortex. Nature (in the press).

  62. Holler, S., Köstinger, G., Martin, K. A. C., Schuhknecht, G. F. P. & Stratford, K. J. Structure and function of a neocortical synapse. Nature 591, 111–116 (2021).

    Article  CAS  PubMed  Google Scholar 

  63. Banitt, Y., Martin, K. A. C. & Segev, I. A biologically realistic model of contrast invariant orientation tuning by thalamocortical synaptic depression. J. Neurosci. 27, 10230–10239 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang, H. -P., Spencer, D., Fellous, J. -M. & Sejnowski, T. J. Synchrony of thalamocortical inputs maximizes cortical reliability. Science 328, 106–109 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Millman, D. J. et al. VIP interneurons in mouse primary visual cortex selectively enhance responses to weak but specific stimuli. Elife 9, e55130 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Keller, A. J. et al. A disinhibitory circuit for contextual modulation in primary visual cortex. Neuron 108, 1181–1193 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dipoppa, M. et al. Vision and locomotion shape the interactions between neuron types in mouse visual cortex. Neuron 98, 602–615 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mossing, D. P., Veit, J., Palmigiano, A., Miller, K. D. & Adesnik, H. Antagonistic inhibitory subnetworks control cooperation and competition across cortical space. Preprint at bioRxiv https://doi.org/10.1101/2021.03.31.437953 (2021).

  69. Veit, J., Hakim, R., Jadi, M. P., Sejnowski, T. J. & Adesnik, H. Cortical gamma band synchronization through somatostatin interneurons. Nat. Neurosci. 20, 951–959 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Adesnik, H., Bruns, W., Taniguchi, H., Huang, Z. J. & Scanziani, M. A neural circuit for spatial summation in visual cortex. Nature 490, 226–231 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Veit, J., Handy, G., Mossing, D. P., Doiron, B. & Adesnik, H. Cortical VIP neurons locally control the gain but globally control the coherence of gamma band rhythms. Neuron 111, 405–417 (2023).

    Article  CAS  PubMed  Google Scholar 

  72. Garrett, M. et al. Experience shapes activity dynamics and stimulus coding of VIP inhibitory cells. Elife 9, e50340 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Garrett, M. et al. Stimulus novelty uncovers coding diversity in visual cortical circuits. Preprint at bioRxiv https://doi.org/10.1101/2023.02.14.528085 (2023).

  74. Pakan, J. M. et al. Behavioral-state modulation of inhibition is context-dependent and cell type specific in mouse visual cortex. Elife 5, e14985 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Poort, J. et al. Learning and attention increase visual response selectivity through distinct mechanisms. Neuron 110, 686–697 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. King, C. W., Ledochowitsch, P., Buice, M. A. & de Vries, S. E. J. Saccade-responsive visual cortical neurons do not exhibit distinct visual response properties. eNeuro https://doi.org/10.1523/ENEURO.0051-23.2023 (2023).

  77. Groblewski, P. A. et al. Characterization of learning, motivation, and visual perception in five transgenic mouse lines expressing GCaMP in distinct cell populations. Front. Behav. Neurosci. 14, 104 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Bugeon, S. et al. A transcriptomic axis predicts state modulation of cortical interneurons. Nature 607, 330–338 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Condylis, C. et al. Dense functional and molecular readout of a circuit hub in sensory cortex. Science 375, eabl5981 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Close, J. L., Long, B. R. & Zeng, H. Spatially resolved transcriptomics in neuroscience. Nat. Methods 18, 23–25 (2021).

    Article  CAS  PubMed  Google Scholar 

  81. Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  82. O’Toole, S. M., Oyibo, H. K. & Keller, G. B. Molecularly targetable cell types in mouse visual cortex have distinguishable prediction error responses. Neuron 111, 2918–2928.e8 (2023).

  83. Hubel, D. H. & Wiesel, T. N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160, 106–154 (1962).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Reid, R. C. & Alonso, J. M. Specificity of monosynaptic connections from thalamus to visual cortex. Nature 378, 281–284 (1995).

    Article  CAS  PubMed  Google Scholar 

  85. Kara, P., Reinagel, P. & Reid, R. C. Low response variability in simultaneously recorded retinal, thalamic, and cortical neurons. Neuron 27, 635–646 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Blasdel, G. G. & Salama, G. Voltage-sensitive dyes reveal a modular organization in monkey striate cortex. Nature 321, 579–585 (1986).

    Article  CAS  PubMed  Google Scholar 

  87. Bonhoeffer, T. & Grinvald, A. in Brain Mapping: the Methods (eds. Toga, A. W. & Mazziotta, J. C.) 55–97 (Academic, 1996).

  88. Malach, R., Amir, Y., Harel, M. & Grinvald, A. Relationship between intrinsic connections and functional architecture revealed by optical imaging and in vivo targeted biocytin injections in primate striate cortex. Proc. Natl Acad. Sci. USA 90, 10469–10473 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bosking, W. H., Zhang, Y., Schofield, B. & Fitzpatrick, D. Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J. Neurosci. 17, 2112–2127 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kisvárday, Z. F., Tóth, E., Rausch, M. & Eysel, U. T. Orientation-specific relationship between populations of excitatory and inhibitory lateral connections in the visual cortex of the cat. Cereb. Cortex 7, 605–618 (1997).

    Article  PubMed  Google Scholar 

  91. Livingstone, M. S. & Hubel, D. H. Specificity of intrinsic connections in primate primary visual cortex. J. Neurosci. 4, 2830–2835 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ohki, K., Chung, S., Ch’ng, Y. H., Kara, P. & Reid, R. C. Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature 433, 597–603 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Ko, H. et al. Functional specificity of local synaptic connections in neocortical networks. Nature 473, 87–91 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cossell, L. et al. Functional organization of excitatory synaptic strength in primary visual cortex. Nature 518, 399–403 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bock, D. D. et al. Network anatomy and in vivo physiology of visual cortical neurons. Nature 471, 177–182 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lee, W. -C. A. et al. Anatomy and function of an excitatory network in the visual cortex. Nature 532, 370–374 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ding, Z. et al. Functional connectomics reveals general wiring rule in mouse visual cortex. Preprint at bioRxiv https://doi.org/10.1101/2023.03.13.531369 (2023).

  98. Wertz, A. et al. Single-cell–initiated monosynaptic tracing reveals layer-specific cortical network modules. Science 349, 70–74 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Rossi, L. F., Harris, K. D. & Carandini, M. Spatial connectivity matches direction selectivity in visual cortex. Nature 588, 648–652 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Honey, C. J. et al. Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl Acad. Sci. USA 106, 2035–2040 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhu, D. et al. Fusing DTI and fMRI data: a survey of methods and applications. Neuroimage 102, 184–191 (2014).

    Article  PubMed  Google Scholar 

  102. Horn, A., Ostwald, D., Reisert, M. & Blankenburg, F. The structural–functional connectome and the default mode network of the human brain. Neuroimage 102, 142–151 (2014).

    Article  PubMed  Google Scholar 

  103. Mori, S. et al. Diffusion tensor imaging of the developing mouse brain. Magn. Reson. Med. 46, 18–23 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Jonckers, E., Van Audekerke, J., De Visscher, G., Van der Linden, A. & Verhoye, M. Functional connectivity fMRI of the rodent brain: comparison of functional connectivity networks in rat and mouse. PLoS ONE 6, e18876 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Oh, S. W. et al. A mesoscale connectome of the mouse brain. Nature 508, 207–214 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yao, S. et al. A whole-brain monosynaptic input connectome to neuron classes in mouse visual cortex. Nat. Neurosci. 26, 350–364 (2023).

    Article  CAS  PubMed  Google Scholar 

  107. Harris, J. A. et al. Hierarchical organization of cortical and thalamic connectivity. Nature 575, 195–202 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bohland, J. W. et al. A proposal for a coordinated effort for the determination of brainwide neuroanatomical connectivity in model organisms at a mesoscopic scale. PLoS Comput. Biol. 5, e1000334 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Zingg, B. et al. Neural networks of the mouse neocortex. Cell 156, 1096–1111 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Foster, N. N. et al. The mouse cortico-basal ganglia-thalamic network. Nature 598, 188–194 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hintiryan, H. et al. The mouse cortico-striatal projectome. Nat. Neurosci. 19, 1100–1114 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hunnicutt, B. J. et al. A comprehensive excitatory input map of the striatum reveals novel functional organization. Elife 5, e19103 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Hunnicutt, B. J. et al. A comprehensive thalamocortical projection map at the mesoscopic level. Nat. Neurosci. 17, 1276–1285 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Benavidez, N. L. et al. Organization of the inputs and outputs of the mouse superior colliculus. Nat. Commun. 12, 4004 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Winnubst, J. et al. Reconstruction of 1,000 projection neurons reveals new cell types and organization of long-range connectivity in the mouse brain. Cell 179, 268–281 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Gao, L. et al. Single-neuron projectome of mouse prefrontal cortex. Nat. Neurosci. 25, 515–529 (2022).

    Article  CAS  PubMed  Google Scholar 

  117. Huang, L. et al. BRICseq bridges brain-wide interregional connectivity to neural activity and gene expression in single animals. Cell 182, 177–188 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Han, Y. et al. The logic of single-cell projections from visual cortex. Nature 556, 51–56 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kebschull, J. M. et al. High-throughput mapping of single-neuron projections by sequencing of barcoded RNA. Neuron 91, 975–987 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Paxinos, G. & Franklin, K. B. J. Paxinos and Franklin’s the Mouse Brain in Stereotaxic Coordinates (Academic, 2019).

  121. Lu, Y. et al. Macaque Brainnetome Atlas: a multifaceted brain map with parcellation, connection, and histology. Sci. Bull. 69, 2241–2259 (2024).

  122. Dong, H. W. & The Allen Institute for Brain Science. The Allen Reference Atlas, (Book + CD-ROM): a Digital Color Brain Atlas of the C57BL/6J Male Mouse (Wiley, 2008).

  123. Ding, S. -L. et al. Comprehensive cellular-resolution atlas of the adult human brain. J. Comp. Neurol. 524, 3127–3481 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Wang, Q. et al. The Allen Mouse Brain Common Coordinate Framework: a 3D reference atlas. Cell 181, 936–953 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Jun, J. J. et al. Fully integrated silicon probes for high-density recording of neural activity. Nature 551, 232–236 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Steinmetz, N. A. et al. Neuropixels 2.0: a miniaturized high-density probe for stable, long-term brain recordings. Science 372, eabf4588 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Liu, L. D. et al. Accurate localization of linear probe electrode arrays across multiple brains. eNeuro https://doi.org/10.1523/ENEURO.0241-21.2021 (2021).

  128. Siegle, J. H. et al. Survey of spiking in the mouse visual system reveals functional hierarchy. Nature 592, 86–92 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. D’Souza, R. D. et al. Hierarchical and nonhierarchical features of the mouse visual cortical network. Nat. Commun. 13, 503 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Peters, A. J., Fabre, J. M. J., Steinmetz, N. A., Harris, K. D. & Carandini, M. Striatal activity topographically reflects cortical activity. Nature 591, 420–425 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Chen, S. et al. Brain-wide neural activity underlying memory-guided movement. Cell 187, 676–691 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Guo, Z. V. et al. Flow of cortical activity underlying a tactile decision in mice. Neuron 81, 179–194 (2014).

    Article  CAS  PubMed  Google Scholar 

  133. Li, N., Chen, T. -W., Guo, Z. V., Gerfen, C. R. & Svoboda, K. A motor cortex circuit for motor planning and movement. Nature 519, 51–56 (2015).

    Article  CAS  PubMed  Google Scholar 

  134. Inagaki, H. K., Fontolan, L., Romani, S. & Svoboda, K. Discrete attractor dynamics underlies persistent activity in the frontal cortex. Nature 566, 212–217 (2019).

    Article  CAS  PubMed  Google Scholar 

  135. Ye, Z. et al. Ultra-high density electrodes improve detection, yield, and cell type identification in neuronal recordings. Preprint at bioRxiv https://doi.org/10.1101/2023.08.23.554527 (2023).

  136. Schneider, A. et al. Transcriptomic cell type structures in vivo neuronal activity across multiple timescales. Cell Rep. 42, 112318 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Markram, H. et al. Reconstruction and simulation of neocortical microcircuitry. Cell 163, 456–492 (2015).

    Article  CAS  PubMed  Google Scholar 

  138. Bezaire, M. J., Raikov, I., Burk, K., Vyas, D. & Soltesz, I. Interneuronal mechanisms of hippocampal theta oscillations in a full-scale model of the rodent CA1 circuit. Elife 5, e18566–e18566 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Ecker, A., Romani, A., Sáray, S., Káli, S. & Migliore, M. Data-driven integration of hippocampal CA1 synaptic physiology in silico. Hippocampus 30, 1129–1145 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Ecker, A. et al. Hippocampal sharp wave-ripples and the associated sequence replay emerge from structured synaptic interactions in a network model of area CA3. Elife 11, e71850 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Potjans, T. C. & Diesmann, M. The cell-type specific cortical microcircuit: relating structure and activity in a full-scale spiking network model. Cereb. Cortex 24, 785–806 (2014).

    Article  PubMed  Google Scholar 

  142. Joglekar, M. R., Mejias, J. F., Yang, G. R. & Wang, X. -J. Inter-areal balanced amplification enhances signal propagation in a large-scale circuit model of the primate cortex. Neuron 98, 222–234 (2018).

    Article  CAS  PubMed  Google Scholar 

  143. Froudist-Walsh, S. et al. A dopamine gradient controls access to distributed working memory in the large-scale monkey cortex. Neuron 109, 3500–3520 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Teeter, C. et al. Generalized leaky integrate-and-fire models classify multiple neuron types. Nat. Commun. 9, 709 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Gouwens, N. W. et al. Systematic generation of biophysically detailed models for diverse cortical neuron types. Nat. Commun. 9, 710 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Billeh, Y. N. et al. Systematic integration of structural and functional data into multi-scale models of mouse primary visual cortex. Neuron 106, 388–403 (2020).

    Article  CAS  PubMed  Google Scholar 

  147. Cai, B. et al. Modeling robust and efficient coding in the mouse primary visual cortex using computational perturbations. Preprint at bioRxiv https://doi.org/10.1101/2020.04.21.051268 (2020).

  148. Giacopelli, G., Tegolo, D., Spera, E. & Migliore, M. On the structural connectivity of large-scale models of brain networks at cellular level. Sci. Rep. 11, 4345–4345 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Stöckl, C., Lang, D. & Maass, W. Probabilistic skeletons endow brain-like neural networks with innate computing capabilities. Preprint at bioRxiv https://doi.org/10.1101/2021.05.18.444689 (2021).

  150. Jabri, T. & MacLean, J. N. Large-scale algorithmic search identifies stiff and sloppy dimensions in synaptic architectures consistent with murine neocortical wiring. Neural Comput. 34, 2347–2373 (2022).

  151. Chen, G., Scherr, F. & Maass, W. A data-based large-scale model for primary visual cortex enables brain-like robust and versatile visual processing. Sci. Adv. 8, eabq7592 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Galván Fraile, J. et al. Modeling circuit mechanisms of opposing cortical responses to visual flow perturbations. PLoS Comput. Biol. 20, e1011921 (2024).

  153. Scherr, F. & Maass, W. Analysis of the computational strategy of a detailed laminar cortical microcircuit model for solving the image-change-detection task. Preprint at bioRxiv https://doi.org/10.1101/2021.11.17.469025 (2021).

  154. Rimehaug, A. E. et al. Uncovering circuit mechanisms of current sinks and sources with biophysical simulations of primary visual cortex. Elife 12, e87169 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Yamins, D. L. K. & DiCarlo, J. J. Using goal-driven deep learning models to understand sensory cortex. Nat. Neurosci. 19, 356–365 (2016).

    Article  CAS  PubMed  Google Scholar 

  156. Pillow, J. W., Paninski, L., Uzzell, V. J., Simoncelli, E. P. & Chichilnisky, E. J. Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model. J. Neurosci. 25, 11003–11013 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Walker, E. Y. et al. Inception loops discover what excites neurons most using deep predictive models. Nat. Neurosci. 22, 2060–2065 (2019).

    Article  CAS  PubMed  Google Scholar 

  158. Schrimpf, M. et al. Integrative benchmarking to advance neurally mechanistic models of human intelligence. Neuron 108, 413–423 (2020).

    Article  CAS  PubMed  Google Scholar 

  159. Turishcheva, P. et al. The Dynamic Sensorium competition for predicting large-scale mouse visual cortex activity from videos. Preprint at https://arxiv.org/abs/2305.19654 (2023).

  160. Abbott, L. F. et al. The mind of a mouse. Cell 182, 1372–1376 (2020).

    Article  CAS  PubMed  Google Scholar 

  161. Chartrand, T. et al. Morphoelectric and transcriptomic divergence of the layer 1 interneuron repertoire in human versus mouse neocortex. Science 382, eadf0805 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Berg, J. et al. Human neocortical expansion involves glutamatergic neuron diversification. Nature 598, 151–158 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Kalmbach, B. E. et al. Signature morpho-electric, transcriptomic, and dendritic properties of human layer 5 neocortical pyramidal neurons. Neuron 109, 2914–2927 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Bakken, T. E. et al. Comparative cellular analysis of motor cortex in human, marmoset and mouse. Nature 598, 111–119 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Lee, B. R. et al. Signature morphoelectric properties of diverse GABAergic interneurons in the human neocortex. Science 382, eadf6484 (2023).

    Article  CAS  PubMed  Google Scholar 

  166. Campagnola, L. et al. Local connectivity and synaptic dynamics in mouse and human neocortex. Science 375, eabj5861 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing of this Perspective.

Corresponding authors

Correspondence to Anton Arkhipov, Nuno da Costa or Saskia de Vries.

Ethics declarations

Competing interests

H.Z. is on the scientific advisory board of MapLight Therapeutics, Inc. C.K. holds an executive position and has a financial interest in Intrinsic Powers, a company whose purpose is to develop a device that can be used in the clinic to assess the presence and absence of consciousness in patients. This does not pose any conflict of interest with regard to the work undertaken for this publication. All other authors declare no competing interests.

Peer review

Peer review information

Nature Neuroscience thanks Kenneth Harris and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arkhipov, A., da Costa, N., de Vries, S. et al. Integrating multimodal data to understand cortical circuit architecture and function. Nat Neurosci 28, 717–730 (2025). https://doi.org/10.1038/s41593-025-01904-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-025-01904-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing