Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Using clusterProfiler to characterize multiomics data

Abstract

With the advent of multiomics, software capable of multidimensional enrichment analysis has become increasingly crucial for uncovering gene set variations in biological processes and disease pathways. This is essential for elucidating disease mechanisms and identifying potential therapeutic targets. clusterProfiler stands out for its comprehensive utilization of databases and advanced visualization features. Importantly, clusterProfiler supports various biological knowledge, including Gene Ontology and Kyoto Encyclopedia of Genes and Genomes, through performing over-representation and gene set enrichment analyses. A key feature is that clusterProfiler allows users to choose from various graphical outputs to visualize results, enhancing interpretability. This protocol describes innovative ways in which clusterProfiler has been used for integrating metabolomics and metagenomics analyses, identifying and characterizing transcription factors under stress conditions, and annotating cells in single-cell studies. In all cases, the computational steps can be completed within ~2 min. clusterProfiler is released through the Bioconductor project and can be accessed via https://bioconductor.org/packages/clusterProfiler/.

Key points

  • clusterProfiler is a software package for characterizing and interpreting omics data. Functional enrichment can be achieved using either over-representation or gene set enrichment analyses; it supports the use of a variety of databases, e.g., Gene Ontology and Kyoto Encyclopedia of Genes and Genomes.

  • Three procedures show specific R commands for example applications asking different research questions and having different graphical outputs. Advice is provided on how to modify the procedures for other applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the protocol.
Fig. 2: Comparing functional profiles among distinct subtypes of IBD.
Fig. 3: Characterization of the biological functions of transcription factors involved in the response to cold stress in bamboo.
Fig. 4: Identify cell type at single-cell level.

Similar content being viewed by others

Data availability

For the integrated analysis of metabolomics and metagenomics, the original metagenomic gene expression data and corresponding metadata, along with metabolomic metabolite expression profiles, were obtained from the supplementary materials of ref. 44. The data can be accessed through PubMed Central at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6342642. For the transcriptomics analysis of PE, we obtained the raw FASTQ sequencing data from the CNGBdb database (https://db.cngb.org/search/project/CNP0002243/) and conducted alignment and quantification analyses to determine the expression levels of individual genes. In Procedure 3, we acquired Illumina NextSeq 500 sequencing data for 2,700 PBMCs from 10X Genomics (https://cf.10xgenomics.com/samples/cell/pbmc3k/pbmc3k_filtered_gene_bc_matrices.tar.gz). Source data are provided with this paper.

Code availability

The original data, processed data and source code, including those for processing the original data and demonstrated in the protocol, are all deposited in the GitHub repository, https://github.com/YuLab-SMU/clusterProfiler_protocol/.

References

  1. Paczkowska, M. et al. Integrative pathway enrichment analysis of multivariate omics data. Nat. Commun. 11, 735 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Boyle, E. I. et al. GO:: TermFinder—open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics 20, 3710–3715 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xie, C., Jauhari, S. & Mora, A. Popularity and performance of bioinformatics software: the case of gene set analysis. BMC Bioinforma. 22, 191 (2021).

    Article  Google Scholar 

  5. Liu, X., Xu, K., Tao, X., Bo, X. & Chang, C. EnrichMiner: a biologist-oriented web server for mining biological insights from functional enrichment analysis results. Preprint at bioRxiv https://doi.org/10.1101/2023.07.12.548786 (2023).

  6. Zhao, K. & Rhee, S. Y. Interpreting omics data with pathway enrichment analysis. Trends Genet. 39, 308–319 (2023).

    Article  CAS  PubMed  Google Scholar 

  7. Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wu, T. et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation 2, 100141 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ding, J. & Zhang, Y. Analysis of key GO terms and KEGG pathways associated with carcinogenic chemicals. Comb. Chem. High. Throughput Screen. 20, 861–871 (2017).

    Article  CAS  Google Scholar 

  10. Li, Z. et al. Prediction and analysis of retinoblastoma related genes through gene ontology and KEGG. Biomed. Res. Int. 2013, 304029 (2013).

    PubMed  PubMed Central  Google Scholar 

  11. Morgan, M. Sequences, Genomes, and Genes in R/Bioconductor (2013); https://www.ebi.ac.uk/sites/ebi.ac.uk/files/content.ebi.ac.uk/materials/2013/131021_HTS/genesandgenomes.pdf

  12. Abromeit, F., Fäth, C. & Glaser, L. Annohub–annotation metadata for linked data applications. In Proc. 7th Workshop on Linked Data in Linguistics (LDL-2020) 36–44 (2020).

  13. Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics 27, 1739–1740 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Martens, M. et al. WikiPathways: connecting communities. Nucleic Acids Res. 49, D613–D621 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Conesa, A. et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674–3676 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Li, S. & Xu, J. KAAS: a keyword-aware attention abstractive summarization model for scientific articles. In International Conference on Database Systems for Advanced Applications 263–271 (Springer, 2022).

  17. Yu, G. & He, Q.-Y. ReactomePA: an R/Bioconductor package for reactome pathway analysis and visualization. Mol. Biosyst. 12, 477–479 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Yu, G. Using meshes for MeSH term enrichment and semantic analyses. Bioinformatics 34, 3766–3767 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Yu, G., Wang, L.-G., Yan, G.-R. & He, Q.-Y. DOSE: an R/Bioconductor package for disease ontology semantic and enrichment analysis. Bioinformatics 31, 608–609 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Yu, G. et al. GOSemSim: an R package for measuring semantic similarity among GO terms and gene products. Bioinformatics 26, 976–978 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Yu, G., Wang, L.-G. & He, Q.-Y. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 31, 2382–2383 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Wang, Q. et al. Exploring epigenomic datasets by ChIPseeker. Curr. Protoc. 2, e585 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).

    Article  Google Scholar 

  24. Yu, G. Enrichplot: visualization of functional enrichment result. R Package Version 1 (2021).

  25. Wickham, H. in ggplot2 189–201 (Springer, 2016).

  26. Merico, D., Isserlin, R., Stueker, O., Emili, A. & Bader, G. D. Enrichment map: a network-based method for gene-set enrichment visualization and interpretation. PloS ONE 5, e13984 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hoover, A. R. et al. Single‐cell RNA sequencing reveals localized tumour ablation and intratumoural immunostimulant delivery potentiate T cell mediated tumour killing. Clin. Transl. Med. 12, e937 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tan, Z. et al. HSPB8 is a potential prognostic biomarker that correlates with immune cell infiltration in bladder cancer. Front. Genet. 13, 804858 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu, J. et al. Eleven genes associated with progression and prognosis of endometrial cancer (EC) identified by comprehensive bioinformatics analysis. Cancer Cell Int. 19, 136 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang, B., Kirov, S. & Snoddy, J. WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res. 33, W741–W748 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gennady Korotkevich et al. Fast gene set enrichment analysis. Preprint at bioRxiv https://doi.org/10.1101/060012 (2021).

  33. Falcon, S. & Gentleman, R. Using GOstats to test gene lists for GO term association. Bioinformatics 23, 257–258 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Kolberg, L., Raudvere, U., Kuzmin, I., Vilo, J. & Peterson, H. gprofiler2—an R package for gene list functional enrichment analysis and namespace conversion toolset g:Profiler. F1000Research 9, ELIXIR-709 (2020).

    Article  PubMed  Google Scholar 

  35. Dennis, G. et al. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 4, R60 (2003).

    Article  Google Scholar 

  36. Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523 (2019).

    Article  PubMed  Google Scholar 

  37. Treveil, A. et al. ViralLink: an integrated workflow to investigate the effect of SARS-CoV-2 on intracellular signalling and regulatory pathways. PLOS Comput. Biol. 17, e1008685 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Jiang, A., Lehnert, K., You, L. & Snell, R. G. ICARUS, an interactive web server for single cell RNA-seq analysis. Nucleic Acids Res. 50, W427–W433 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. Liu, J., Erenpreisa, J. & Sikora, E. Polyploid giant cancer cells: an emerging new field of cancer biology. Semin. Cancer Biol. 81, 1–4 (2022).

    Article  PubMed  Google Scholar 

  40. Cui, G. et al. A carbon–nitrogen negative feedback loop underlies the repeated evolution of cnidarian–Symbiodiniaceae symbioses. Nat. Commun. 14, 6949 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nie, M. et al. Evolutionary metabolic landscape from preneoplasia to invasive lung adenocarcinoma. Nat. Commun. 12, 6479 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xu, S. et al. MicrobiotaProcess: a comprehensive R package for deep mining microbiome. Innovation 4, 100388 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen, A. et al. Single-cell spatial transcriptome reveals cell-type organization in the macaque cortex. Cell 186, 3726–3743.e24 (2023).

    Article  CAS  PubMed  Google Scholar 

  44. Franzosa, E. A. et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat. Microbiol. 4, 293–305 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Nie, Y. et al. Innovations and stepwise evolution of CBFs/DREB1s and their regulatory networks in angiosperms. J. Integr. Plant Biol. 64, 2111–2125 (2022).

    Article  CAS  PubMed  Google Scholar 

  46. Vandereyken, K., Sifrim, A., Thienpont, B. & Voet, T. Methods and applications for single-cell and spatial multi-omics. Nat. Rev. Genet. 24, 494–515 (2023).

    Article  CAS  PubMed  Google Scholar 

  47. Castanza, A. S. et al. Extending support for mouse data in the Molecular Signatures Database (MSigDB). Nat. Methods 20, 1619–1620 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Fernandes, A. D., Macklaim, J. M., Linn, T. G., Reid, G. & Gloor, G. B. ANOVA-like differential expression (ALDEx) analysis for mixed population RNA-seq. PLoS ONE 8, e67019 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wishart, D. S. et al. HMDB: the human metabolome database. Nucleic Acids Res. 35, D521–D526 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jewison, T. et al. SMPDB 2.0: big improvements to the small molecule pathway database. Nucleic Acids Res. 42, D478–D484 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Jin, J. et al. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res. 45, D1040–D1045 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. McCarthy, D. J., Campbell, K. R., Lun, A. T. L. & Wills, Q. F. Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R. Bioinformatics 33, 1179–1186 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lun, A., McCarthy, D. & Marioni, J. A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor. F1000Research 5, 2122 (2016).

    PubMed  PubMed Central  Google Scholar 

  59. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Cortal, A., Martignetti, L., Six, E. & Rausell, A. Gene signature extraction and cell identity recognition at the single-cell level with Cell-ID. Nat. Biotechnol. 39, 1095–1102 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. Wadi, L., Meyer, M., Weiser, J., Stein, L. D. & Reimand, J. Impact of outdated gene annotations on pathway enrichment analysis. Nat. Methods 13, 705–706 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pritykin, Y., Ghersi, D. & Singh, M. Genome-wide detection and analysis of multifunctional genes. PLoS Comput. Biol. 11, e1004467 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Tian, F., Yang, D.-C., Meng, Y.-Q., Jin, J. & Gao, G. PlantRegMap: charting functional regulatory maps in plants. Nucleic Acids Res. 48, D1104–D1113 (2019).

    PubMed Central  Google Scholar 

  64. Anders, S. et al. Count-based differential expression analysis of RNA sequencing data using R and Bioconductor. Nat. Protoc. 8, 1765–1786 (2013).

    Article  PubMed  Google Scholar 

  65. Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Buie, M. J. et al. Global hospitalization trends for Crohn’s Disease and ulcerative colitis in the 21st century: a systematic review with temporal analyses. Clin. Gastroenterol. Hepatol. 21, 2211–2221 (2023).

    Article  PubMed  Google Scholar 

  67. Scoville, E. A. et al. Alterations in lipid, amino acid, and energy metabolism distinguish Crohn’s disease from ulcerative colitis and control subjects by serum metabolomic profiling. Metabolomics 14, 17 (2018).

    Article  PubMed  Google Scholar 

  68. Duboc, H. et al. Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases. Gut 62, 531 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Moura, J. C. M. S., Bonine, C. A. V., De Oliveira Fernandes Viana, J., Dornelas, M. C. & Mazzafera, P. Abiotic and biotic stresses and changes in the lignin content and composition in plants. J. Integr. Plant Biol. 52, 360–376 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Lv, K. et al. Overexpression of an AP2/ERF family gene, BpERF13, in birch enhances cold tolerance through upregulating CBF genes and mitigating reactive oxygen species. Plant Sci. 292, 110375 (2020).

    Article  CAS  PubMed  Google Scholar 

  71. Guo, Z. et al. Genome-wide analysis of the rhododendron AP2/ERF gene family: identification and expression profiles in response to cold, salt and drought stress. Plants 12, 994 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ding, Y. & Yang, S. Surviving and thriving: how plants perceive and respond to temperature stress. Dev. Cell 57, 947–958 (2022).

    Article  CAS  PubMed  Google Scholar 

  73. Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Truong, D. T. et al. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat. Methods 12, 902–903 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. Franzosa, E. A. et al. Species-level functional profiling of metagenomes and metatranscriptomes. Nat. Methods 15, 962–968 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Trapnell, C., Pachter, L. & Salzberg, S. L. TopHat: discovering splice junctions with RNA-seq. Bioinformatics 25, 1105–1111 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ghosh, S. & Chan, C.-K. K. in Plant Bioinformatics (ed. Edwards, D.) vol. 1374, 339–361 (Springer, 2016).

  82. Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinforma. 12, 323 (2011).

    Article  CAS  Google Scholar 

  83. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Consortium, G. O. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res. 32, D258–D261 (2004).

    Article  Google Scholar 

  86. Schriml, L. M. et al. Disease Ontology: a backbone for disease semantic integration. Nucleic Acids Res. 40, D940–D946 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Piñero, J. et al. DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 45, D833–D839 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Repana, D. et al. The Network of Cancer Genes (NCG): a comprehensive catalogue of known and candidate cancer genes from cancer sequencing screens. Genome Biol. 20, 1 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Fabregat, A. et al. The reactome pathway knowledgebase. Nucleic Acids Res. 46, D649–D655 (2017).

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (32270677). We appreciate the feedback and support from clusterProfiler users.

Author information

Authors and Affiliations

Authors

Contributions

S.X., E.H. and Y.C. wrote the main manuscript and discussed the cases. S.X. and E.H. improved the code. Z.X. and X.L. conducted the pipeline and analyzed the results. L.Z., W.T., Q.W. and B.L. edited the paper for improvement. R.W., W.X., T.W. and L.X. reviewed the paper. G.Y. supervised the project, conducted the analysis and wrote the manuscript.

Corresponding author

Correspondence to Guangchuang Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Juri Reimand, Jianguo Xia and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Yu, G. et al. OMICS 16, 284–287 (2012): https://doi.org/10.1089/omi.2011.0118

Wu, T. et al. Innovation 2, 100141 (2021): https://doi.org/10.1016/j.xinn.2021.100141

Ne, M. et al. Nat. Commun. 12, 6479 (2021): https://doi.org/10.1038/s41467-021-26685-y

Alexandre, P. A. et al. Genome Biol. 22, 273 (2021): https://doi.org/10.1186/s13059-021-02489-7

Sankowski, R. et al. Nat. Med. 30, 186–198 (2024): https://doi.org/10.1038/s41591-023-02673-1

Supplementary information

Supplementary Information

Supplementary Notes 1 and 2.

Reporting Summary

Supplementary Table 1

Comparisons of clusterProfiler with other tools for enrichment analysis

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Hu, E., Cai, Y. et al. Using clusterProfiler to characterize multiomics data. Nat Protoc 19, 3292–3320 (2024). https://doi.org/10.1038/s41596-024-01020-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-024-01020-z

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research