Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Multiplexed single-molecule characterization at the library scale

Abstract

Single-molecule techniques are exceptionally well suited for analyzing the complex dynamic behavior of macromolecules involved in fundamental biological processes. Nevertheless, time and cost usually restrict current single-molecule methods to examining a limited number of different samples. At the same time, a broad sequence or chemical space often needs to be investigated to gain a thorough understanding of complex biological phenomena. To address this urgent need, we have developed multiplexed single-molecule characterization at the library scale (MUSCLE), a method that combines single-molecule fluorescence microscopy with next-generation sequencing to enable highly multiplexed observations of complex dynamics on millions of individual molecules spanning thousands of distinct sequences or barcoded entities. In this protocol, we outline the implementation of MUSCLE and present examples from our recent research, such as the sequence-dependent dynamics of Cas9-induced target DNA unwinding and rewinding. This example demonstrates that MUSCLE can be applied to study protein–nucleic acid interactions, going beyond nucleic-acid-only model systems. We detail the sample and library design, high-throughput single-molecule data acquisition, next-generation sequencing, spatial registration of single-molecule fluorescence and sequencing data and downstream data analysis. The ligation-based surface immobilization approach of MUSCLE ensures high clustering efficiency (>40%), increasing throughput and simplifying registration. In addition, MUSCLE includes a 3D-printed flow cell adapter that enables liquid exchange during single-molecule fluorescence microscopy. The complete procedure typically spans 3–4 days and yields a dataset that comprehensively characterizes the dynamic behavior of a library of constructs.

Key points

  • MUSCLE leverages single-molecule fluorescence microscopy and next-generation sequencing to characterize in parallel the dynamic behavior of millions of DNA molecules immobilized on an Illumina flow cell by matching single-molecule traces to the corresponding sequenced clusters.

  • Beyond probing how sequence affects the dynamics of single DNA molecules, this approach can be used to study protein–nucleic acid interactions, as illustrated by the sequence-dependent dynamics of Cas9-induced target DNA unwinding and rewinding.

This is a preview of subscription content, access via your institution

Access options

Fig. 1: MUSCLE workflow overview.
Fig. 2: MUSCLE library design and surface immobilization.
Fig. 3: Single-molecule fluorescence imaging.
Fig. 4: Matching sequencing cluster and single-molecule coordinates.
Fig. 5: smFRET data analysis and visualization.

Similar content being viewed by others

Data availability

MUSCLE datasets are available in the SciLifeLab Data Repository76. A smaller test MUSCLE dataset and the data for Supplementary Fig. 1 have also been deposited in the SciLifeLab Data Repository77.

Code availability

The latest version of the MUSCLE data analysis codes can be found at https://github.com/deindllab/MUSCLE, while the current version has been archived in the SciLifeLab Data Repository77.

References

  1. Mohapatra, S., Lin, C.-T., Feng, X. A., Basu, A. & Ha, T. Single-molecule analysis and engineering of DNA motors. Chem. Rev. 120, 36–78 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Bacic, L., Sabantsev, A. & Deindl, S. Recent advances in single-molecule fluorescence microscopy render structural biology dynamic. Curr. Opin. Struct. Biol. 65, 61–68 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Hill, F. R., Monachino, E. & van Oijen, A. M. The more the merrier: high-throughput single-molecule techniques. Biochem. Soc. Trans. 45, 759–769 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Choi, J., Grosely, R., Puglisi, E. V. & Puglisi, J. D. Expanding single-molecule fluorescence spectroscopy to capture complexity in biology. Curr. Opin. Struct. Biol. 58, 233–240 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Orrit, M., Ha, T. & Sandoghdar, V. Single-molecule optical spectroscopy. Chem. Soc. Rev. 43, 973–976 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Kulzer, F. & Orrit, M. Single-molecule optics. Annu. Rev. Phys. Chem. 55, 585–611 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Dangkulwanich, M., Ishibashi, T., Bintu, L. & Bustamante, C. Molecular mechanisms of transcription through single-molecule experiments. Chem. Rev. 114, 3203–3223 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhou, J., Schweikhard, V. & Block, S. M. Single-molecule studies of RNAPII elongation. Biochim. Biophys. Acta 1829, 29–38 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Michaelis, J. & Treutlein, B. Single-molecule studies of RNA polymerases. Chem. Rev. 113, 8377–8399 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Bai, L., Santangelo, T. J. & Wang, M. D. Single-molecule analysis of RNA polymerase transcription. Annu. Rev. Biophys. Biomol. Struct. 35, 343–360 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Stracy, M. & Kapanidis, A. N. Single-molecule and super-resolution imaging of transcription in living bacteria. Methods 120, 103–114 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lerner, E. et al. Toward dynamic structural biology: two decades of single-molecule Förster resonance energy transfer. Science 359, eaan1133 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dulin, D., Berghuis, B. A., Depken, M. & Dekker, N. H. Untangling reaction pathways through modern approaches to high-throughput single-molecule force-spectroscopy experiments. Curr. Opin. Struct. Biol. 34, 116–122 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Juette, M. F. et al. The bright future of single-molecule fluorescence imaging. Curr. Opin. Chem. Biol. 20, 103–111 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Felce, J. H., Davis, S. J. & Klenerman, D. Single-molecule analysis of G protein-coupled receptor stoichiometry: approaches and limitations. Trends Pharmacol. Sci. 39, 96–108 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Camunas-Soler, J., Ribezzi-Crivellari, M. & Ritort, F. Elastic properties of nucleic acids by single-molecule force spectroscopy. Annu. Rev. Biophys. 45, 65–84 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Park, S., Brandani, G. B., Ha, T. & Bowman, G. D. Bi-directional nucleosome sliding by the Chd1 chromatin remodeler integrates intrinsic sequence-dependent and ATP-dependent nucleosome positioning. Nucleic Acids Res. 51, 10326–10343 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hoskins, A. A., Gelles, J. & Moore, M. J. New insights into the spliceosome by single molecule fluorescence microscopy. Curr. Opin. Chem. Biol. 15, 864–870 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Deindl, S. & Zhuang, X. Monitoring conformational dynamics with single-molecule fluorescence energy transfer: applications in nucleosome remodeling. Methods Enzymol. 513, 59–86 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tome, J. M. et al. Comprehensive analysis of RNA-protein interactions by high-throughput sequencing-RNA affinity profiling. Nat. Methods 11, 683–688 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nutiu, R. et al. Direct measurement of DNA affinity landscapes on a high-throughput sequencing instrument. Nat. Biotechnol. 29, 659–664 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jung, C. et al. Massively parallel biophysical analysis of CRISPR-Cas complexes on next generation sequencing chips. Cell 170, 35–47.e13 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kleiner, R. E., Dumelin, C. E., Tiu, G. C., Sakurai, K. & Liu, D. R. In vitro selection of a DNA-templated small-molecule library reveals a class of macrocyclic kinase inhibitors. J. Am. Chem. Soc. 132, 11779–11791 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Basu, A. et al. Measuring DNA mechanics on the genome scale. Nature 589, 462–467 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Nguyen, U. T. T. et al. Accelerated chromatin biochemistry using DNA-barcoded nucleosome libraries. Nat. Methods 11, 834–840 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dann, G. P. et al. ISWI chromatin remodellers sense nucleosome modifications to determine substrate preference. Nature 548, 607–611 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Severins, I., Joo, C. & van Noort, J. Exploring molecular biology in sequence space: the road to next-generation single-molecule biophysics. Mol. Cell 82, 1788–1805 (2022).

    Article  CAS  PubMed  Google Scholar 

  28. Kinney, J. B. & McCandlish, D. M. Massively parallel assays and quantitative sequence-function relationships. Annu. Rev. Genomics Hum. Genet. 20, 99–127 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Marklund, E., Ke, Y. & Greenleaf, W. J. High-throughput biochemistry in RNA sequence space: predicting structure and function. Nat. Rev. Genet. 24, 401–414 (2023).

    Article  CAS  PubMed  Google Scholar 

  30. Layton, C. J., McMahon, P. L. & Greenleaf, W. J. Large-scale, quantitative protein assays on a high-throughput DNA sequencing chip. Mol. Cell 73, 1075–1082.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Boyle, E. A. et al. High-throughput biochemical profiling reveals sequence determinants of dCas9 off-target binding and unbinding. Proc. Natl Acad. Sci. USA 114, 5461–5466 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Svensen, N., Peersen, O. B. & Jaffrey, S. R. Peptide synthesis on a next-generation DNA sequencing platform. Chembiochem 17, 1628–1635 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Szymczak, L. C., Kuo, H.-Y. & Mrksich, M. Peptide arrays: development and application. Anal. Chem. 90, 266–282 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Wu, D. et al. Flow-cell-based technology for massively parallel characterization of base-modified DNA aptamers. Anal. Chem. 95, 2645–2652 (2023).

    Article  CAS  PubMed  Google Scholar 

  35. Li, Z. et al. DNB-based on-chip motif finding: a high-throughput method to profile different types of protein-DNA interactions. Sci. Adv. 6, eabb3350 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mamet, N. et al. Ab-initio discovery of tumoricidal oligonucleotides in a DNA sequencing machine. Preprint at bioRxiv https://doi.org/10.1101/630830 (2019).

  37. Buenrostro, J. D. et al. Quantitative analysis of RNA-protein interactions on a massively parallel array reveals biophysical and evolutionary landscapes. Nat. Biotechnol. 32, 562–568 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bentley, D. R. et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456, 53–59 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Aguirre Rivera, J. et al. Massively parallel analysis of single-molecule dynamics on next-generation sequencing chips. Science 385, 892–898 (2024).

    Article  CAS  PubMed  Google Scholar 

  40. Sabantsev, A. et al. Spatiotemporally controlled generation of NTPs for single-molecule studies. Nat. Chem. Biol. 18, 1144–1151 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Korman, A. et al. Light-controlled twister ribozyme with single-molecule detection resolves RNA function in time and space. Proc. Natl Acad. Sci. USA 117, 12080–12086 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Brieke, C., Rohrbach, F., Gottschalk, A., Mayer, G. & Heckel, A. Light-controlled tools. Angew. Chem. Int. Ed. Engl. 51, 8446–8476 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Liu, Y. et al. Very fast CRISPR on demand. Science 368, 1265–1269 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hwang, H., Kim, H. & Myong, S. Protein induced fluorescence enhancement as a single molecule assay with short distance sensitivity. Proc. Natl Acad. Sci. USA 108, 7414–7418 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kosuri, P., Altheimer, B. D., Dai, M., Yin, P. & Zhuang, X. Rotation tracking of genome-processing enzymes using DNA origami rotors. Nature 572, 136–140 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Smith, S. B., Finzi, L. & Bustamante, C. Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science 258, 1122–1126 (1992).

    Article  CAS  PubMed  Google Scholar 

  47. Strick, T. R., Allemand, J. F., Bensimon, D., Bensimon, A. & Croquette, V. The elasticity of a single supercoiled DNA molecule. Science 271, 1835–1837 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Cnossen, J. P., Dulin, D. & Dekker, N. H. An optimized software framework for real-time, high-throughput tracking of spherical beads. Rev. Sci. Instrum. 85, 103712 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Huhle, A. et al. Camera-based three-dimensional real-time particle tracking at kHz rates and Ångström accuracy. Nat. Commun. 6, 5885 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Andrews, R. et al. Transient DNA binding to gapped DNA substrates links DNA sequence to the single-molecule kinetics of protein-DNA interactions. Preprint at bioRxiv https://doi.org/10.1101/2022.02.27.482175 (2022).

  51. Makasheva, K. et al. Multiplexed single-molecule experiments reveal nucleosome invasion dynamics of the Cas9 genome editor. J. Am. Chem. Soc. 143, 16313–16319 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shema, E. et al. Single-molecule decoding of combinatorially modified nucleosomes. Science 352, 717–721 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fedyuk, V. et al. Multiplexed, single-molecule, epigenetic analysis of plasma-isolated nucleosomes for cancer diagnostics. Nat. Biotechnol. 41, 212–221 (2023).

    Article  CAS  PubMed  Google Scholar 

  54. Severins, I. et al. Single-molecule structural and kinetic studies across sequence space. Science 385, 898–904 (2024).

    Article  CAS  PubMed  Google Scholar 

  55. Illumina. What Is the Minimum Library Size That Can Be Sequenced? https://knowledge.illumina.com/library-preparation/general/library-preparation-general-faq-list/000006540 (2025).

  56. Nakamura, K. et al. Sequence-specific error profile of Illumina sequencers. Nucleic Acids Res. 39, e90 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hamming, R. W. Error detecting and error correcting codes. Bell Syst. Tech. J. 29, 147–160 (1950).

    Article  Google Scholar 

  58. McCann, J. J., Choi, U. B., Zheng, L., Weninger, K. & Bowen, M. E. Optimizing methods to recover absolute FRET efficiency from immobilized single molecules. Biophys. J. 99, 961–970 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Preus, S., Hildebrandt, L. L. & Birkedal, V. Optimal background estimators in single-molecule FRET microscopy. Biophys. J. 111, 1278–1286 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Roy, R., Hohng, S. & Ha, T. A practical guide to single-molecule FRET. Nat. Methods 5, 507–516 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Preus, S., Noer, S. L., Hildebrandt, L. L., Gudnason, D. & Birkedal, V. iSMS: single-molecule FRET microscopy software. Nat. Methods 12, 593–594 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Thomsen, J. et al. DeepFRET, a software for rapid and automated single-molecule FRET data classification using deep learning. eLife 9, e60404 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Li, J., Zhang, L., Johnson-Buck, A. & Walter, N. G. Automatic classification and segmentation of single-molecule fluorescence time traces with deep learning. Nat. Commun. 11, 5833 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Juette, M. F. et al. Single-molecule imaging of non-equilibrium molecular ensembles on the millisecond timescale. Nat. Methods 13, 341–344 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Wanninger, S. et al. Deep-LASI: deep-learning assisted, single-molecule imaging analysis of multi-color DNA origami structures. Nat. Commun. 14, 6564 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Götz, M. et al. A blind benchmark of analysis tools to infer kinetic rate constants from single-molecule FRET trajectories. Nat. Commun. 13, 5402 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Blumhardt, P. et al. Photo-induced depletion of binding sites in DNA-PAINT microscopy. Molecules 23, 3165 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Edelstein, A., Amodaj, N., Hoover, K., Vale, R. & Stuurman, N. Computer control of microscopes using µManager. Curr. Protoc. Mol. Biol. 92, 14.20.1–14.20.17 (2010).

    Google Scholar 

  70. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Williams, R. et al. Amplification of complex gene libraries by emulsion PCR. Nat. Methods 3, 545–550 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Patil, P. V. & Ballou, D. P. The use of protocatechuate dioxygenase for maintaining anaerobic conditions in biochemical experiments. Anal. Biochem. 286, 187–192 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Aitken, C. E., Marshall, R. A. & Puglisi, J. D. An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments. Biophys. J. 94, 1826–1835 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kapanidis, A. N. et al. Alternating-laser excitation of single molecules. Acc. Chem. Res. 38, 523–533 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Tseng, Q. et al. A new micropatterning method of soft substrates reveals that different tumorigenic signals can promote or reduce cell contraction levels. Lab Chip 11, 2231–2240 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Aguirre Rivera, J. et al. Massively parallel analysis of single-molecule dynamics on next generation sequencing chips. SciLifeLab Data Repository https://doi.org/10.17044/scilifelab.25705512 (2024).

  77. Panfilov, M. et al. MUSCLE (MUltiplexed Single-molecule Characterization at the Library scalE) protocol data and codes. SciLifeLab Data Repository https://doi.org/10.17044/scilifelab.28008872.v1 (2024).

  78. Sternberg, S. R. Biomedical image processing. Computer 16, 22–34 (1983).

  79. Illumina. What Are the Illumina Sequencing Primer Sequences? https://knowledge.illumina.com/library-preparation/general/library-preparation-general-faq-list/000007129 (2025).

  80. lllumina. What Sequences Do I Use for Adapter Trimming https://knowledge.illumina.com/library-preparation/general/library-preparation-general-reference_material-list/000001314 (2025).

Download references

Acknowledgements

We thank M. Lindell (National Genomics Infrastructure, Scilifelab, Uppsala, Sweden) for Illumina sequencing. The original work that led to the development of this protocol was funded by European Research Council (ERC) Advanced Grant ERC-ADG-101092623 (to S.D.), Knut and Alice Wallenberg Foundation grant KAW/WAF 2019.0306 (to S.D.), Knut and Alice Wallenberg Foundation grant KAW 2024.0012 (to S.D.), Cancerfonden grant 22 2106 Pj (to S.D.) and Swedish Research Council project grants VR 03534 and VR 03255 (to S.D.).

Author information

Authors and Affiliations

Authors

Contributions

The comprehensive description of the MUSCLE method is based and extends upon the contributions of the authors listed in the initial publication39. S.D. conceived the project, with input from A.S. J.A.R. designed the 3D-printed adapter, built the optical setup with input from A.S. and implemented automated data acquisition. G.M. and J.A.R. conducted MUSCLE experiments. A.S., M.P. and J.G. implemented the trace-registration pipeline. A.S. and M.P. developed the MATLAB pipeline for trace analysis from MUSCLE data. M.P., G.M., A.S. and S.D. wrote the paper, with input from all authors.

Corresponding authors

Correspondence to A. Sabantsev or S. Deindl.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key reference

Aguirre Rivera, J. et al. Science 385, 892–898 (2024): https://doi.org/10.1126/science.adn5371

Supplementary information

Supplementary Information

Supplementary Figs. 1–5

Supplementary Data

Blueprint for 3D-printing the flow cell adapter

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panfilov, M., Mao, G., Guo, J. et al. Multiplexed single-molecule characterization at the library scale. Nat Protoc (2025). https://doi.org/10.1038/s41596-025-01198-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41596-025-01198-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing