Table 5 Effects of parameter \({\varvec{q}}\) on decision results using Q-ROFHSEWG operator.
Parameter | Score value | Ranking |
---|---|---|
\({\varvec{q}} = 1\) | \(S\left( {{\mathcal{L}}_{1} } \right)\) = \(-\) 0.2232, \(S\left( {{\mathcal{L}}_{2} } \right)\) = \(-\) 0.2024, \(S\left( {{\mathcal{L}}_{3} } \right)\) = \(-\) 0.0856 | \(\aleph^{\left( 3 \right)} > \aleph^{\left( 2 \right)}\) \(>\) \(\aleph^{\left( 1 \right)}\) |
\({\varvec{q}} = 2\) | \(S\left( {{\mathcal{L}}_{1} } \right)\) = \(-\) 0.2540, \(S\left( {{\mathcal{L}}_{2} } \right)\) = \(-\) 0.2916, \(S\left( {{\mathcal{L}}_{3} } \right)\) = \(-\) 0.1626 | \(\aleph^{\left( 3 \right)} > \aleph^{\left( 1 \right)}\) \(>\) \(\aleph^{\left( 2 \right)}\) |
\({\varvec{q}} = 3\) | \(S\left( {{\mathcal{L}}_{1} } \right)\) = \(-\) 0.2072, \(S\left( {{\mathcal{L}}_{2} } \right)\) = \(-\) 0.2963, \(S\left( {{\mathcal{L}}_{3} } \right)\) = \(-\) 0.1896 | \(\aleph^{\left( 3 \right)} > \aleph^{\left( 1 \right)}\) \(>\) \(\aleph^{\left( 2 \right)}\) |
\({\varvec{q}} = 4\) | \(S\left( {{\mathcal{L}}_{1} } \right)\) = \(-\) 0.1567, \(S\left( {{\mathcal{L}}_{2} } \right)\) = \(-\) 0.2684, \(S\left( {{\mathcal{L}}_{3} } \right)\) = \(-\) 0.1836 | \(\aleph^{\left( 1 \right)} > \aleph^{\left( 3 \right)}\) \(>\) \(\aleph^{\left( 2 \right)}\) |
\({\varvec{q}} = 5\) | \(S\left( {{\mathcal{L}}_{1} } \right)\) = \(-\) 0.1178, \(S\left( {{\mathcal{L}}_{2} } \right)\) = \(-\) 0.2334, \(S\left( {{\mathcal{L}}_{3} } \right)\) = \(-\) 0.1654 | \(\aleph^{\left( 1 \right)} > \aleph^{\left( 3 \right)}\) \(>\) \(\aleph^{\left( 2 \right)}\) |
\({\varvec{q}} = 6\) | \(S\left( {{\mathcal{L}}_{1} } \right)\) = \(-\) 0.0899, \(S\left( {{\mathcal{L}}_{2} } \right)\) = \(-\) 0.2006, \(S\left( {{\mathcal{L}}_{3} } \right)\) = \(-\) 0.1449 | \(\aleph^{\left( 1 \right)} > \aleph^{\left( 3 \right)}\) \(>\) \(\aleph^{\left( 2 \right)}\) |
\({\varvec{q}} = 7\) | \(S\left( {{\mathcal{L}}_{1} } \right)\) = \(-\) 0.0699, \(S\left( {{\mathcal{L}}_{2} } \right)\) = \(-\) 0.1722, \(S\left( {{\mathcal{L}}_{3} } \right)\) = \(-\) 0.1258 | \(\aleph^{\left( 1 \right)} > \aleph^{\left( 3 \right)}\) \(>\) \(\aleph^{\left( 2 \right)}\) |
\({\varvec{q}} = 8\) | \(S\left( {{\mathcal{L}}_{1} } \right)\) = \(-\) 0.0555, \(S\left( {{\mathcal{L}}_{2} } \right)\) = \(-\) 0.1484, \(S\left( {{\mathcal{L}}_{3} } \right)\) = \(-\) 0.1091 | \(\aleph^{\left( 1 \right)} > \aleph^{\left( 3 \right)}\) \(>\) \(\aleph^{\left( 2 \right)}\) |
\({\varvec{q}} = 9\) | \(S\left( {{\mathcal{L}}_{1} } \right)\) = \(-\) 0.0449, \(S\left( {{\mathcal{L}}_{2} } \right)\) = \(-\) 0.1286, \(S\left( {{\mathcal{L}}_{3} } \right)\) = \(-\) 0.0948 | \(\aleph^{\left( 1 \right)} > \aleph^{\left( 3 \right)}\) \(>\) \(\aleph^{\left( 2 \right)}\) |
\({\varvec{q}} = 10\) | \(S\left( {{\mathcal{L}}_{1} } \right)\) = \(-\) 0.0368, \(S\left( {{\mathcal{L}}_{2} } \right)\) = \(-\) 0.1120, \(S\left( {{\mathcal{L}}_{3} } \right)\) = \(-\) 0.0827 | \(\aleph^{\left( 1 \right)} > \aleph^{\left( 3 \right)}\) \(>\) \(\aleph^{\left( 2 \right)}\) |