Table 3 Equilibrium point stability analysis.
Equilibrium point | Eigenvalues of Jacobian matrix | The symbol of real part | Stability | Condition | ||
---|---|---|---|---|---|---|
λ1 | λ2 | λ3 | ||||
E1 (0, 0, 0) | \({\alpha V}_{2}-{\alpha V}_{1}-A\) | \({\alpha H}_{2}-{\alpha W}_{2}\) | \({H}_{5}-{H}_{4}+{K}_{1}+{K}_{2} +{R}_{2}+T+\alpha {P}_{2}\) | (× , −, +) | Unstable point | – |
E2 (1, 0, 0) | \({\alpha H}_{2}-{\alpha W}_{1}\) | \(A+{\alpha V}_{1}-{\alpha V}_{2}\) | \({H}_{5}-{H}_{4}+{K}_{1}+{R}_{2}+T+\alpha {P}_{1}\) | (−, × , +) | Unstable point | – |
E3 (0, 1, 0) | \({\alpha W}_{2}-{\alpha H}_{2}\) | \(-A\) | \({H}_{5}-{H}_{4}-B+{K}_{2}+{R}_{2}\) | (−, −, −) | ESS | (1) |
E4 (0, 0, 1) | \({K}_{2}-A-{\alpha V}_{1}+{\alpha V}_{2}\) | \(B+\alpha {H}_{2}+\alpha {P}_{2}-{\alpha W}_{2}\) | \({H}_{4}{-H}_{5}-{K}_{1}-{K}_{2}\) \(-{R}_{2}-T-\alpha {P}_{2}\) | (+ , + , −) | Unstable point | – |
E5 (1, 1, 0) | \(A\) | \({\alpha W}_{1}-{\alpha H}_{2}\) | \({H}_{5}-{H}_{4}+{R}_{2}\) | (+ , + , ×) | Unstable point | – |
E6 (1, 0, 1) | \({{\alpha H}_{2}+\alpha {P}_{1}-\alpha W}_{1}\) | \(A-{K}_{2}+{\alpha V}_{1}-{\alpha V}_{2}\) | \({H}_{4}{-H}_{5}-{K}_{1}-{R}_{2}-T-\alpha {P}_{1}\) | (+ , −, −) | Unstable point | – |
E7 (0, 1, 1) | \({K}_{2}-A\) | \({\alpha W}_{2}-{\alpha H}_{2}-\alpha {P}_{2}-B\) | \({B+{H}_{4}-H}_{5}-{K}_{2}-{R}_{2}\) | (+ , −, ×) | Unstable point | – |
E8 (1, 1, 1) | \(A-{K}_{2}\) | \({{H}_{4}-H}_{5}-{R}_{2}\) | \({\alpha W}_{1}-\alpha {P}_{1}-{\alpha H}_{2}\) | (−, −, −) | ESS | (2) |