Table 6 Comparative experiments on improving networks and other networks on aluminum datasets.

From: Aluminum surface defect detection method based on a lightweight YOLOv4 network

Network model

[email protected]

P

M

Op

Cr

Nc

R

F

S

YOLOv4

93.31

1

1

0.99

0.97

0.95

0.95

0.85

0.75

M2-YOLOv4

92.25

1

1

1

0.99

0.95

0.94

0.83

0.67

YOLOv5

89.33

0.98

0.98

0.84

0.98

0.86

0.97

0.69

0.82

YOLOv7

92.25

1

0.98

0.86

1

0.9

0.97

0.86

0.81

Li’s method26

87.38

1

0.98

0.98

1

0.83

0.93

0.73

0.54

Hao’s method27

90.75

1

0.97

0.97

0.92

0.92

0.91

0.89

0.68

M2-BL-YOLOv4

93.5

1

1

1

0.99

0.96

0.95

0.85

0.73