Table 5 Results of Ablation Study of three variants (ResNet18, ResNet34, and ResNet50) of ResNet as our backbone network.

From: Emphysema subtyping on thoracic computed tomography scans using deep neural networks

Backbone

Subtype

Accuracy (%)

F-measure

Linear weighted kappa (95% CI)

#Param (M)

GMACs

(a) Classification network in predicting paraseptal emphysema severity

 ResNet18

Centrilobular

48.55

47.58

62.50 (61.83–63.63)

34.48

1148.05

Paraseptal

54.81

51.68

33.63 (31.77–35.49)

 ResNet34

Centrilobular

52.33

51.00

64.29 (63.16–65.42)

64.79

1661.95

Paraseptal

59.12

57.12

42.03 (40.21–43.85)

 ResNet50

Centrilobular

51.31

51.00

63.00 (61.84–64.16)

47.86

1702.69

Paraseptal

54.79

52.22

34.62 (32.76–36.48)

(b) Regression network in predicting emphysema severity

 ResNet18

Centrilobular

49.91

47.08

62.53 (61.39–63.67)

34.48

1147.81

Paraseptal

55.87

53.92

39.16 (37.40–40.92)

 ResNet34

Centrilobular

51.32

49.61

64.24 (63.14–65.35)

64.79

1661.72

Paraseptal

64.62

60.74

52.06 (50.40–53.73)

 ResNet50

Centrilobular

51.03

46.70

62.15 (60.98–63.31)

47.86

1702.45

Paraseptal

62.21

56.22

47.21 (45.45–48.97)