Table 9 The BEs and PRs under DLF with parameters \(\lambda_{1} = 0.4, \, \lambda_{2} = 0.3, \, \lambda_{3} = 0.2, \, p_{1} = 0.5, \, p_{2} = 0.3.\)

From: The 3-component mixture of power distributions under Bayesian paradigm with application of life span of fatigue fracture

\(t\)

\(n\)

Priors

BEs

\(\hat{\lambda }_{1}\)

\(\hat{\lambda }_{2}\)

\(\hat{\lambda }_{3}\)

\(\hat{p}_{1}\)

\(\hat{p}_{2}\)

00.6

30

UP

0.614231

0.530024

0.483540

0.416600

0.382451

JP

0.574220

0.493455

0.438801

0.424322

0.394551

IP

0.601124

0.503371

0.546788

0.409701

0.380052

50

UP

0.536788

0.450774

0.411580

0.436321

0.366014

JP

0.510114

0.427113

0.404551

0.439975

0.374402

IP

0.530047

0.429989

0.326741

0.417330

0.355001

100

UP

0.473310

0.376775

0.320046

0.463007

0.330767

JP

0.460124

0.366609

0.319344

0.463551

0.355771

IP

0.493320

0.400311

0.315664

0.458771

0.328003

\(t\)

\(n\)

Priors

PRs

00.6

30

UP

0.365771

0.453304

0.503378

0.167012

0.323752

JP

0.402257

0.474830

0.558332

0.175506

0.340057

IP

0.346681

0.417745

0.479010

0.130221

0.278700

50

UP

0.277740

0.361421

0.426609

0.117452

0.217740

JP

0.289918

0.368892

0.457200

0.139820

0.227327

IP

0.256744

0.317054

0.374450

0.105881

0.175584

100

UP

0.193221

0.256772

0.303054

0.084452

0.135421

JP

0.207784

0.266681

0.337451

0.106671

0.158544

IP

0.168406

0.214771

0.273341

0.053347

0.098557