Table 2 Experimental results on the CLTP-DD.

From: Dual-branch information extraction and local attention anchor-free network for defect detection

Network

Backbone

Params (M)

GFLOPs

mAP (%)

FPS (img/s)

Faster R-CNN

ResNet50

164.96

379.69

78.7

5.4

SSD

VGG16

24.53

87.86

93.8

28.3

YOLO V3

Darknet53

61.53

193.87

93.6

12.8

YOLO V5-L

CSPDarknet53

46.14

53.98

94.2

37.6

RetinaNet

Swin-T

36.84

210.29

80.5

17.2

Deformable DETR

ResNet50

39.82

195.23

95.1

10.1

YOLOX-S

CSPDarknet53

8.94

33.3

91.3

16.9

DINO

ResNet50

47.54

197.00

95.3

25.1

Mask R-CNN

Swin-T

47.38

261.81

95.6

9.7

SwinTD

Swin-T

47.38

262.9

96.4

9.6

FCOS

ResNet50

32.13

125.95

93.8

22.0

DLA-FCOS(Ours)

DFENet

41.01

186.37

96.8

20.7