Table 3 Performance of different algorithms on real-world data sets.

From: Adaptive soft sensor using stacking approximate kernel based BLS for batch processes

Name of data set

BLS

KBLS

AKBLS

\({\text{R}}^{{2}}\)

Time

\({\text{R}}^{{2}}\)

Time

\({\text{R}}^{{2}}\)

Time

Penicillin dataset 1

0.99774

0.08096

0.99938

0.07596

0.99924

0.02797

Penicillin dataset 2

0.99538

0.16213

0.99823

0.19988

0.99782

0.09594

Penicillin dataset 3

0.99132

0.96596

0.99742

2.55625

0.99918

1.50113

Penicillin dataset 4

0.98983

5.21843

0.99355

16.2907

0.9934

9.97005

Steel industry energy consumption

0.98718

5.60765

0.99788

15.3896

0.99793

7.38505

Flight price prediction

0.97042

9.66289

0.98484

27.125

0.98512

14.0166

Electric power consumption

0.91691

8.2057

0.9288

19.2953

0.9357

11.5036

Remaining useful lifetime prediction

0.99645

16.7048

0.9994

104.052

0.99944

27.8417