Table 4 Diagnostic performance of combined models based on radiomic and clinicoradiological variables applied to 4 different ML algorithms and MLP.

From: Predictive value of MRI-based deep learning model for lymphovascular invasion status in node-negative invasive breast cancer

Models

AUC

95% CI

Sensitivity

Specificity

Accuracy

PPV

NPV

Lower

Upper

LR

 Training set

0.909

0.869

0.950

0.798

0.922

0.861

0.908

0.826

 Validation set

0.805

0.708

0.901

0.7381

0.800

0.770

0.775

0.766

RF

 Training set

0.972

0.954

0.990

0.919

0.903

0.911

0.901

0.921

 Validation set

0.833

0.742

0.925

0.810

0.733

0.770

0.739

0.805

SGD

 Training set

0.500

0.500

0.500

1.000

0.000

0.490

0.490

0.000

 Validation set

0.500

0.500

0.500

1.000

0.000

0.483

0.483

0.000

SVM

 Training set

0.889

0.843

0.934

0.727

0.932

0.832

0.911

0.781

 Validation set

0.797

0.699

0.895

0.667

0.822

0.747

0.778

0.726

MLP*

 Training set

0.927

0.893

0.955

0.991

0.380

0.671

0.592

0.979

 Validation set

0.835

0.719

0.929

0.935

0.333

0.655

0.617

0.818

  1. AUC area under the ROC curves, CI confidence interval, PPV positive prediction value, NPV negative prediction value, LR logistic regression, RF random forest, SGD stochastic gradient descent, SVM support vector machine, MLP multilayer perceptron.
  2. *The optimal predictive performance in the validation set was observed in the MLP model.