Table 7 A comparative analysis of MTECM-FOSS performance against contemporary techniques for dataset 2.

From: Fractional-order state space reconstruction: a new frontier in multivariate complex time series

Study

Methods

Number of labels

Feature

Accuracy (%)

Prediction time (s)

Size(MB)

Number

Deep learning methods

Cui et al.36

GAF-CBAM-CNN

10

2.26

NAN

98.9

104

EMD- Resnet50

10

90.5

NAN

96.3

78

Zhong et al.37

ShuffleNet-V2

10

7.39

NAN

98.2

0.081

VGG-16

10

138.35

NAN

99.2

15.34

SLCNN-n

10

0.95–4.75

NAN

95.6–99.5

0.085

Entropy Methods

Dhandapani et al.38

MDE(NCDF)

10

NAN

20

97.8

NAN

RCMDE(NCDF)

10

NAN

20

99.6

NAN

MSE

10

NAN

20

97.8

NAN

GGD-RCMDE

10

NAN

20

99.6

NAN

Proposed method

MTECM-FOSS

10

NAN

14

99.5

1.15

  1. Significant values are in bold.