Table 1 Low-carbon properties prediction by different researchers.

From: A hybrid prediction and multi-objective optimization framework for limestone calcined clay cement concrete mixture design

No

Reference

Year

Algorithms used

Main raw materials1

Predicted outputs

1

16

2024

BPNN, SI

RCA, FA

CS, CIR

2

17

2023

FQ, NLR, MLR, ANN

FA

CS

3

18

2024

LDA, AdaBoost, ANN

CSA

CS

4

19

2021

SVM, RF. AdaBoost, DT, KNN

MK

CS

5

20

2020

AdaBoost

FA, Slag

CS

6

21

2022

LightGBM, XGBoost

MK

CIR

7

22

2024

RF, LightGBM, XGBoost

RHA

CS

8

23

2020

RF, GEP, ANN, DT

HSC

CS

9

24

2018

MARS, M5-tree, SVM, ELM

LFC

CS

10

25

2020

GEP

HSC

CS

11

26

2023

RF, ANN, MARS

GPC

CS

12

27

2024

ANN, SVM, M5-tree

SCC

CS, STS

13

28

2022

GB, XGBoost, SVM, PSO

RCA

CS

14

29

2022

DT, ET, AdaBoost, XGBoost, LightGBM, LKRR

Slag, FA

CS

  1. RCA Recycled concrete aggregates, FA Fly ash, CIR chloride ion resistance, MK metakaolin, CSA coral sand aggregates, RHA rice husk ash, HSC high-strength concrete, GPC geopolymer concrete, SCC self-compacting concrete, BPNN Back propagation neural network, SI Swarm intelligence, FQ Full-quadratic, NLR Nonlinear regression, MLR Multi-linear regression, MARS multivariate adaptive regression spline, ELM extreme learning machine, SVM support vector machine, DT decision tree, ET extra tree, GB Gradient boosting, RF random forest, KNN k-nearest neighbors, AdaBoost Adaptive boosting algorithm, Light GBM light gradient boosting machine, XGBoost extreme gradient boosting, PSO particle swarm optimization, LKRR Laplacian kernel ridge regression, ANN Artificial neural network, GEP gene expression programming, LFC lightweight foam concrete, CS compressive strength, STS splitting tensile strength.