Table 1 Results of experiments with different optimizer and learning rate on ISIC-2018.

From: Dual-channel compression mapping network with fused attention mechanism for medical image segmentation

 

Accuracy

TPR

Dice

Jaccard

Optimizer (learning rate = 0.001)

 Adam

0.9142

0.8893

0.8609

0.7602

 Adamax

0.9128

0.8879

0.8586

0.7582

 RMSprop

0.9090

0.8843

0.8523

0.7526

 Rprop

0.9137

0.8888

0.8601

0.7595

 SGD

0.8965

0.8721

0.8312

0.7340

Learning rate (optimizer = Adam)

 0.0005

0.9091

0.8848

0.8602

0.7596

 0.001

0.9142

0.8893

0.8609

0.7602

 0.005

0.8829

0.8588

0.8092

0.7146

 0.01

0.8752

0.8513

0.7973

0.7040

 0.05

0.8352

0.8124

0.7356

0.6496

 0.1

0.8334

0.8107

0.7325

0.6469