Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Post-2020 biodiversity framework challenged by cropland expansion in protected areas

Abstract

Protected areas (PAs) are essential for biodiversity conservation but are threatened by cropland expansion. Recent studies have only reported global cropland expansion in large PAs between 1990 and 2005. However, the amount of cropland expansion in global PAs (including relatively small PAs) since the 2000s is unclear. Using 30-m cropland maps, we find that the cropland expansion in PAs accelerated dramatically from 2000 to 2019, compared with that of global croplands. The areal expansion was mainly in large PAs, less-strict PAs and Afrotropical PAs, which also matches the higher species extinction risks. Such PAs appear to be less effective due to greater threats, such as higher background cropland expansion rate. Notably, some PAs with the highest conservation levels failed to prevent cropland expansion. This new picture of cropland dynamics in PAs illustrates that cropland expansion is an ongoing intractable global conservation challenge that will impinge on the aspirations of the post-2020 global biodiversity framework.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Percentage of cropland area change in PAs from 2000 to 2019.
Fig. 2: Cropland changes in PAs from 2000 to 2019.
Fig. 3: Mean values in cropland change rate between 2000 and 2019 by biogeographic realms, IUCN management categories and PA sizes, for PAs and associated matched counterfactuals.
Fig. 4: Impact of cropland expansion in PAs on biodiversity extinction risks.
Fig. 5: Effects of background cropland expansion rate on cropland change rates in PAs.

Similar content being viewed by others

Data availability

All underlying raw model data are publicly available online. Potapov et al.’s cropland data are available at https://glad.umd.edu/dataset/croplands. GlobeLand30 cropland data are available at http://www.globallandcover.com/. AGLC cropland data are available at https://code.earthengine.google.com/?asset=users/xxc/GLC_2000_2015. PA data are freely available online at https://www.protectedplanet.net/en. Expert-derived polygons of amphibians, mammals and reptiles are available online at the IUCN Red List Portal https://www.iucnredlist.org/resources/spatial-data-download. Polygons of bird distributions can be requested from BirdLife International http://datazone.birdlife.org/species/requestdis. Human population density data can be obtained at https://data.worldbank.org/. Human Development Index data are available at https://hdr.undp.org/. Government effectiveness and corruption datasets are available at https://info.worldbank.org/governance/wgi/. Share of GDP on agriculture data are available at https://datacatalog.worldbank.org/search/dataset/0037712/World-Development-Indicators. Source data are provided with this paper.

Code availability

The code that supports our findings is available at https://github.com/ziqi123456/Cropland-expansion-in-globalPAs.

References

  1. Watson, J. E., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential of protected areas. Nature 515, 67–73 (2014).

    CAS  Google Scholar 

  2. Gray, C. L. et al. Local biodiversity is higher inside than outside terrestrial protected areas worldwide. Nat. Commun. 7, 12306 (2016).

    CAS  Google Scholar 

  3. Protected Planet: The World Database on Protected Areas (UNEP-WCMC & IUCN, 2021); http://www.protectedplanet.net

  4. First Draft of the Post-2020 Global Biodiversity Framework (CBD, 2021); https://www.cbd.int/doc/c/abb5/591f/2e46096d3f0330b08ce87a45/wg2020-03-03-en.pdf

  5. Jones, K. R. et al. One-third of global protected land is under intense human pressure. Science 360, 788–791 (2018).

    CAS  Google Scholar 

  6. Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl Acad. Sci. USA 116, 23209–23215 (2019).

    CAS  Google Scholar 

  7. Powers, R. P. & Jetz, W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Clim. Change 9, 323–329 (2019).

    Google Scholar 

  8. Potapov, P. et al. Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century. Nat. Food 3, 19–28 (2022).

    Google Scholar 

  9. Godfray, H. C. et al. Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010).

    CAS  Google Scholar 

  10. Mogollón, J. M. et al. More efficient phosphorus use can avoid cropland expansion. Nat. Food 2, 509–518 (2021).

    Google Scholar 

  11. Williams, D. R. et al. Proactive conservation to prevent habitat losses to agricultural expansion. Nat. Sustain. 4, 314–322 (2021).

    Google Scholar 

  12. Ward, M. et al. Just ten percent of the global terrestrial protected area network is structurally connected via intact land. Nat. Commun. 11, 4563 (2020).

    CAS  Google Scholar 

  13. Guerrero-Pineda, C. et al. An investment strategy to address biodiversity loss from agricultural expansion. Nat. Sustain. 5, 610–618 (2022).

    Google Scholar 

  14. Vijay, V. & Armsworth, P. R. Pervasive cropland in protected areas highlight trade-offs between conservation and food security. Proc. Natl Acad. Sci. USA 118, e2010121118 (2021).

    CAS  Google Scholar 

  15. Volenec, Z. M. & Dobson, A. P. Conservation value of small reserves. Conserv. Biol. 34, 66–79 (2020).

    Google Scholar 

  16. Xu, X., Li, B., Liu, X., Li, X. & Shi, Q. Mapping annual global land cover changes at a 30m resolution from 2000 to 2015. Natl Remote Sens. Bull. 25, 1896–1916 (2021).

    Google Scholar 

  17. Chen, J. et al. Global land cover mapping at 30m resolution: a POK-based operational approach. ISPRS J. Photogramm. Remote Sens. 103, 7–27 (2015).

    Google Scholar 

  18. Wolf, C., Levi, T., Ripple, W. J., Zarrate-Charry, D. A. & Betts, M. G. A forest loss report card for the world’s protected areas. Nat. Ecol. Evol. 5, 520–529 (2021).

    Google Scholar 

  19. Murakami, D. & Griffith, D. A. Balancing spatial and non-spatial variation in varying coefficient modeling: a remedy for spurious correlation. Geogr. Anal. 55, 31–55 (2023).

    Google Scholar 

  20. Di Marco, M., Ferrier, S., Harwood, T. D., Hoskins, A. J. & Watson, J. E. M. Wilderness areas halve the extinction risk of terrestrial biodiversity. Nature 573, 582–585 (2019).

    Google Scholar 

  21. Tilman, D. et al. Future threats to biodiversity and pathways to their prevention. Nature 546, 73–81 (2017).

    CAS  Google Scholar 

  22. Kehoe, L. et al. Biodiversity at risk under future cropland expansion and intensification. Nat. Ecol. Evol. 1, 1129–1135 (2017).

    Google Scholar 

  23. Sekercioglu, C. H. et al. Long-term declines in bird populations in tropical agricultural countryside. Proc. Natl Acad. Sci. USA 116, 9903–9912 (2019).

    CAS  Google Scholar 

  24. Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

    CAS  Google Scholar 

  25. Jayathilake, H. M., Prescott, G. W., Carrasco, L. R., Rao, M. & Symes, W. S. Drivers of deforestation and degradation for 28 tropical conservation landscapes. Ambio 50, 215–228 (2021).

    Google Scholar 

  26. Grassini, P., Eskridge, K. M. & Cassman, K. G. Distinguishing between yield advances and yield plateaus in historical crop production trends. Nat. Commun. 4, 2918 (2013).

    Google Scholar 

  27. Agriculture at a Crossroads: Synthesis Report (IAASTD & UNEP, 2009); https://wedocs.unep.org/20.500.11822/7862

  28. Lindsey, P. et al. Conserving Africa’s wildlife and wildlands through the COVID-19 crisis and beyond. Nat. Ecol. Evol. 4, 1300–1310 (2020).

    Google Scholar 

  29. Rudel, T. K. & Meyfroidt, P. Organizing anarchy: the food security–biodiversity–climate crisis and the genesis of rural land use planning in the developing world. Land Use Policy 36, 239–247 (2014).

    Google Scholar 

  30. Fisher, J. A., Cavanagh, C. J., Sikor, T. & Mwayafu, D. M. Linking notions of justice and project outcomes in carbon offset forestry projects: insights from a comparative study in Uganda. Land Use Policy 73, 259–268 (2018).

    Google Scholar 

  31. Barnes, M. D. et al. Wildlife population trends in protected areas predicted by national socio-economic metrics and body size. Nat. Commun. 7, 12747 (2016).

    CAS  Google Scholar 

  32. Pendrill, F. et al. Agricultural and forestry trade drives large share of tropical deforestation emissions. Glob. Environ. Change 56, 1–10 (2019).

    Google Scholar 

  33. Lark, T. J., Larson, B., Schelly, I., Batish, S. & Gibbs, H. K. Accelerated conversion of native prairie to cropland in Minnesota. Environ. Conserv. 46, 155–162 (2018).

    Google Scholar 

  34. Morefield, P. E., LeDuc, S. D., Clark, C. M. & Iovanna, R. Grasslands, wetlands, and agriculture: the fate of land expiring from the Conservation Reserve Program in the Midwestern United States. Environ. Res. Lett. 11, 094005 (2016).

    Google Scholar 

  35. Batary, P., Dicks, L. V., Kleijn, D. & Sutherland, W. J. The role of agri-environment schemes in conservation and environmental management. Conserv. Biol. 29, 1006–1016 (2015).

    Google Scholar 

  36. Pendrill, F. et al. Disentangling the numbers behind agriculture-driven tropical deforestation. Science 377, eabm9267 (2022).

    CAS  Google Scholar 

  37. Laurance, W. F. et al. Averting biodiversity collapse in tropical forest protected areas. Nature 489, 290–294 (2012).

    CAS  Google Scholar 

  38. Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).

    CAS  Google Scholar 

  39. Eklund, J. & Cabeza, M. Quality of governance and effectiveness of protected areas: crucial concepts for conservation planning. Ann. NY Acad. Sci. 1399, 27–41 (2017).

    Google Scholar 

  40. Porter-Bolland, L. et al. Community managed forests and forest protected areas: an assessment of their conservation effectiveness across the tropics. For. Ecol. Manag. 268, 6–17 (2012).

    Google Scholar 

  41. Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).

    CAS  Google Scholar 

  42. Alexandratos, N. & Bruinsma, J. World Agriculture Towards 2030/2050: The 2012 Revision. (FAO Agricultural Development Economics Division, 2012).

  43. Hunter, M. C., Smith, R. G., Schipanski, M. E., Atwood, L. W. & Mortensen, D. A. Agriculture in 2050: recalibrating targets for sustainable intensification. BioScience 67, 386–391 (2017).

    Google Scholar 

  44. Goldman, E. D., Weisse, M., Harris, N. & Schneider, M. Estimating the Role of Seven Commodities in Agriculture-linked Deforestation: Oil Palm, Soy, Cattle, Wood Fiber, Cocoa, Coffee, and Rubber (World Resources Institute, 2020); https://doi.org/10.46830/writn.na.00001

  45. Lindsey, P. A. et al. More than $1 billion needed annually to secure Africa’s protected areas with lions. Proc. Natl Acad. Sci. USA 115, E10788–E10796 (2018).

    CAS  Google Scholar 

  46. Sandbrook, C., Adams, W. M., Büscher, B. & Vira, B. Social research and biodiversity conservation. Conserv. Biol. 27, 1487–1490 (2013).

    Google Scholar 

  47. Maxwell, S. L. et al. Area-based conservation in the twenty-first century. Nature 586, 217–227 (2020).

    CAS  Google Scholar 

  48. Bai, Y. et al. Developing China’s Ecological Redline Policy using ecosystem services assessments for land use planning. Nat. Commun. 9, 3034 (2018).

    Google Scholar 

  49. Asamoah, E. F., Beaumont, L. J. & Maina, J. M. Climate and land-use changes reduce the benefits of terrestrial protected areas. Nat. Clim. Change 11, 1105–1110 (2021).

    Google Scholar 

  50. Bingham, H. C. et al. Sixty years of tracking conservation progress using the World Database on Protected Areas. Nat. Ecol. Evol. 3, 737–743 (2019).

    Google Scholar 

  51. Joppa, L. N. & Pfaff, A. High and far: biases in the ___location of protected areas. PLoS ONE 4, e8273 (2009).

    Google Scholar 

  52. Ho, D. E., Imai, K., King, G. & Stuart, E. A. Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference. Polit. Anal. 15, 199–236 (2007).

    Google Scholar 

  53. Farr, T. G. et al. The shuttle radar topography mission. Rev. Geophys. 45, RG2004 (2007).

  54. Zabel, F., Putzenlechner, B. & Mauser, W. Global agricultural land resources – a high resolution suitability evaluation and its perspectives until 2100 under climate change conditions. PLoS ONE 9, e107522 (2014).

    Google Scholar 

  55. Mu, H. et al. A global record of annual terrestrial human footprint dataset from 2000 to 2018. Sci. Data 9, 176 (2022).

    Google Scholar 

  56. Stuart, E. A. Matching methods for causal inference: a review and a look forward. Stat. Sci. 25, 1–21 (2010).

    Google Scholar 

  57. Ewers, R. M. & Rodrigues, A. S. Estimates of reserve effectiveness are confounded by leakage. Trends Ecol. Evol. 23, 113–116 (2008).

    Google Scholar 

  58. Shen, Y. et al. Protected areas have remarkable spillover effects on forest conservation on the Qinghai‐Tibet Plateau. Divers. Distrib. 28, 2944–2955 (2022).

  59. Ford, S. A. et al. Deforestation leakage undermines conservation value of tropical and subtropical forest protected areas. Glob. Ecol. Biogeogr. 29, 2014–2024 (2020).

    Google Scholar 

  60. Meng, Z. et al. Effectiveness in protected areas at resisting development pressures in China. Appl. Geogr. 141, 102682 (2022).

    Google Scholar 

  61. The IUCN Red List of Threatened Species. Version 2021-9 (IUCN, accessed 22 December 2021); https://www.iucnredlist.org

  62. Bird Species Distribution Maps of the World. Version 2020.1 (BirdLife International and Handbook of the Birds of the World, 2020); http://datazone.birdlife.org/species/requestdis

  63. Murakami, D. Spatial regression modeling using the spmoran package: Boston housing price data examples. https://doi.org/10.48550/arXiv.1703.04467 (2021).

Download references

Acknowledgements

This research was funded by the National Key Research and Development Program of China (grant no. 2022YFF0802400), the National Natural Science Foundation of China (grant nos. 72221002 and 42271375) and the Youth Interdisciplinary Team Project of the Chinese Academy of Sciences (grant no. JCTD-2021-04). X.X. and Y.Q were supported by the US National Science Foundation (grant nos. 1911955 and 1946093).

Author information

Authors and Affiliations

Authors

Contributions

J.D. and Z.M. conceptualized the study. Z.M. performed research, analysed data and made the visualizations in consultation with J.D., X.-P.S. and X.X. The writing and editing of the manuscript was done by Z.M., J.D., E.C.E., G.M., Y.Q., X.-P.S., S.L., R.D.G., X.J. and X.X.

Corresponding author

Correspondence to Jinwei Dong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Jonas Geldmann and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–7, Supplementary Figs. 1–16 and Supplementary Tables 1–6.

Reporting Summary

Source data

Source Data Fig. 2

Statistical Source Data

Source Data Fig. 3

Statistical Source Data

Source Data Fig. 4

Statistical Source Data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Z., Dong, J., Ellis, E.C. et al. Post-2020 biodiversity framework challenged by cropland expansion in protected areas. Nat Sustain 6, 758–768 (2023). https://doi.org/10.1038/s41893-023-01093-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-023-01093-w

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene