Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mimicking hydrogen-atom-transfer-like reactivity in copper-catalysed olefin hydrofunctionalization

Abstract

The renaissance of catalytic metal hydride hydrogen atom transfer (MHAT) offers advanced tools for radical chemistry on simple olefins. While 3d transition metals like cobalt, iron and manganese have been extensively studied in catalytic MHAT, the potential of copper remains unexplored. This is due to the polar reactivity exhibited by classical nucleophilic Cu(I)–H. Here we report copper-catalysed MHAT-like oxidative hydrofunctionalization reactions. In contrast to conventional Cu(I)–H chemistry, the putative Cu-MHAT process produces alkyl radicals with high chemoselectivity and regioselectivity, which are subsequently captured by Cu(II) species to undergo coupling reactions with a broad scope of oxygen-, nitrogen-, halogen- and carbon-based nucleophiles. Preliminary results suggest viable extension to asymmetric catalysis and radical polymerization. This work offers a complementary oxidative MHAT platform.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Alkene functionalization via Cu-MHAT: background and proposal.
Fig. 2: Selected optimizations, evaluation of alkenes and comparison with traditional metal hydrides.
Fig. 3: Scope for catalytic hydrofunctionalization via Cu-MHAT.
Fig. 4: Mechanistic studies.
Fig. 5: Mechanistic hypothesis, DFT calculations and further extensions.

Similar content being viewed by others

Data availability

The data that support the findings in this study are available within the Article and its Supplementary Information or available from the corresponding author upon request. Crystallographic data for the structure reported in this Article have been deposited at the Cambridge Crystallographic Data Centre under deposition number CCDC 2280327 (46). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Simonneau, A. & Oestreich, M. Fascinating hydrogen atom transfer chemistry of alkenes inspired by problems in total synthesis. Angew. Chem. Int. Ed. 54, 3556–3558 (2015).

    Article  CAS  Google Scholar 

  2. Shevick, S. L. et al. Catalytic hydrogen atom transfer to alkenes: a roadmap for metal hydrides and radicals. Chem. Sci. 11, 12401–12422 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Crossley, S. W., Obradors, C., Martinez, R. M. & Shenvi, R. A. Mn-, Fe-, and Co-catalysed radical hydrofunctionalizations of olefins. Chem. Rev. 116, 8912–9000 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Isayama, S. & Mukaiyama, T. A new method for preparation of alcohols from olefins with molecular oxygen and phenylsilane by the use of bis(acetylacetonato)cobalt(II). Chem. Lett. 18, 1071–1074 (1989).

    Article  Google Scholar 

  5. Eisenberg, D. C. & Norton, J. R. Hydrogen-atom transfer reactions of transition-metal hydrides. Isr. J. Chem. 31, 55–66 (1991).

    Article  CAS  Google Scholar 

  6. Waser, J. & Carreira, E. M. Convenient synthesis of alkylhydrazides by the cobalt-catalyzed hydrohydrazination reaction of olefins and azodicarboxylates. J. Am. Chem. Soc. 126, 5676–5677 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Waser, J. & Carreira, E. M. Catalytic hydrohydrazination of a wide range of alkenes with a simple Mn complex. Angew. Chem. Int. Ed. 43, 4099–4102 (2004).

    Article  CAS  Google Scholar 

  8. Li, G., Han, A., Pulling, M. E., Estes, D. P. & Norton, J. R. Evidence for formation of a Co–H bond from (H2O)2Co(dmgBF2)2 under H2: application to radical cyclizations. J. Am. Chem. Soc. 134, 14662–14665 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Barker, T. J. & Boger, D. L. Fe(III)/NaBH4-mediated free radical hydrofluorination of unactivated alkenes. J. Am. Chem. Soc. 134, 13588–13591 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shigehisa, H., Aoki, T., Yamaguchi, S., Shimizu, N. & Hiroya, K. Hydroalkoxylation of unactivated olefins with carbon radicals and carbocation species as key intermediates. J. Am. Chem. Soc. 135, 10306–10309 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Crossley, S. W., Barabe, F. & Shenvi, R. A. Simple, chemoselective, catalytic olefin isomerization. J. Am. Chem. Soc. 136, 16788–16791 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gui, J. et al. Practical olefin hydroamination with nitroarenes. Science 348, 886–891 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Touney, E. E., Foy, N. J. & Pronin, S. V. Catalytic radical–polar crossover reactions of allylic alcohols. J. Am. Chem. Soc. 140, 16982–16987 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Song, L. et al. Dual electrocatalysis enables enantioselective hydrocyanation of conjugated alkenes. Nat. Chem. 12, 747–754 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Qin, T. et al. Cobalt-catalyzed radical hydroamination of alkenes with N-fluorobenzenesulfonimides. Angew. Chem. Int. Ed. 60, 25949–25957 (2021).

    Article  CAS  Google Scholar 

  16. Kamei, Y. et al. Silane- and peroxide-free hydrogen atom transfer hydrogenation using ascorbic acid and cobalt-photoredox dual catalysis. Nat. Commun. 12, 966 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nakagawa, M., Matsuki, Y., Nagao, K. & Ohmiya, H. A triple photoredox/cobalt/Brønsted acid catalysis enabling Markovnikov hydroalkoxylation of unactivated alkenes. J. Am. Chem. Soc. 144, 7953–7959 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Bergamaschi, E., Mayerhofer, V. J. & Teskey, C. J. Light-driven cobalt hydride catalyzed hydroarylation of styrenes. ACS Catal. 12, 14806–14811 (2022).

    Article  CAS  Google Scholar 

  19. Serviano, J. M. I., Phipps, E. J. T. & Holland, P. L. Intermolecular hydroalkoxylation and hydrocarboxylation of 2-azadienes with high efficiency. J. Org. Chem. 88, 3277–3281 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jordan, A. J., Lalic, G. & Sadighi, J. P. Coinage metal hydrides: synthesis, characterization, and reactivity. Chem. Rev. 116, 8318–8372 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Liu, R. Y. & Buchwald, S. L. CuH-catalyzed olefin functionalization: from hydroamination to carbonyl addition. Acc. Chem. Res. 53, 1229–1243 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhu, S. L., Niljianskul, N. & Buchwald, S. L. Enantio- and regioselective CuH-catalyzed hydroamination of alkenes. J. Am. Chem. Soc. 135, 15746–15749 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Miki, Y., Hirano, K., Satoh, T. & Miura, M. Copper-catalyzed intermolecular regioselective hydroamination of styrenes with polymethylhydrosiloxane and hydroxylamines. Angew. Chem. Int. Ed. 52, 10830–10834 (2013).

    Article  CAS  Google Scholar 

  24. Zhu, S. L. & Buchwald, S. L. Enantioselective CuH-catalyzed anti-Markovnikov hydroamination of 1,1-disubstituted alkenes. J. Am. Chem. Soc. 136, 15913–15916 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shi, S. L., Wong, Z. L. & Buchwald, S. L. Copper-catalysed enantioselective stereodivergent synthesis of amino alcohols. Nature 532, 353–356 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shi, S. L. & Buchwald, S. L. Copper-catalysed selective hydroamination reactions of alkynes. Nat. Chem. 7, 38–44 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Wang, Y.-M., Bruno, N. C., Placeres, Á. L., Zhu, S. & Buchwald, S. L. Enantioselective synthesis of carbo- and heterocycles through a CuH-catalyzed hydroalkylation approach. J. Am. Chem. Soc. 137, 10524–10527 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wahidur Rahaman, S. M., Matyjaszewski, K. & Poli, R. Cobalt(iii) and copper(ii) hydrides at the crossroad of catalysed chain transfer and catalysed radical termination: a DFT study. Polym. Chem. 7, 1079–1087 (2016).

    Article  CAS  Google Scholar 

  29. Zerk, T. J., Gahan, L. R., Krenske, E. H. & Bernhardt, P. V. The fate of copper catalysts in atom transfer radical chemistry. Polym. Chem. 10, 1460–1470 (2019).

    Article  CAS  Google Scholar 

  30. Mulac, W. A. & Meyerstein, D. Properties of copper(II) hydride formed in the reaction of aquacopper(I) ions with hydrogen atoms. A pulse radiolytic study. Inorg. Chem. 21, 1782–1784 (1982).

    Article  CAS  Google Scholar 

  31. Eberhart, M. S. et al. Electron transfer from hexameric copper hydrides. J. Am. Chem. Soc. 135, 17262–17265 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, S. et al. A dinitrogen dicopper(I) complex via a mixed-valence dicopper hydride. Angew. Chem. Int. Ed. 55, 9927–9931 (2016).

    Article  CAS  Google Scholar 

  33. Yang, W. et al. Enantioselective hydroxylation of dihydrosilanes to Si-chiral silanols catalyzed by in situ generated copper(II) species. Angew. Chem. Int. Ed. 61, e202205743 (2022).

    Article  CAS  Google Scholar 

  34. Ryu, I., Kusumoto, N., Ogawa, A., Kambe, N. & Sonoda, N. Copper(II)-mediated stereoselective reduction of acetylenic sulfones by hydrosilanes. Organometallics 8, 2279–2281 (1989).

    Article  CAS  Google Scholar 

  35. Norwine, E. E., Kiernicki, J. J., Zeller, M. & Szymczak, N. K. Distinct reactivity modes of a copper hydride enabled by an intramolecular Lewis acid. J. Am. Chem. Soc. 144, 15038–15046 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Van Hoveln, R. et al. Mechanistic studies of copper(I)-catalyzed 1,3-halogen migration. J. Am. Chem. Soc. 137, 5346–5354 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Golden, D. L. et al. Benzylic C–H esterification with limiting C–H substrate enabled by photochemical redox buffering of the Cu catalyst. J. Am. Chem. Soc. 145, 9434–9440 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhu, R. & Buchwald, S. L. Copper-catalyzed oxytrifluoromethylation of unactivated alkenes. J. Am. Chem. Soc. 134, 12462–12465 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhou, X.-L. et al. Cobalt-catalyzed intermolecular hydrofunctionalization of alkenes: evidence for a bimetallic pathway. J. Am. Chem. Soc. 141, 7250–7255 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Sun, H.-L., Yang, F., Ye, W.-T., Wang, J.-J. & Zhu, R. Dual cobalt and photoredox catalysis enabled intermolecular oxidative hydrofunctionalization. ACS Catal. 10, 4983–4989 (2020).

    Article  CAS  Google Scholar 

  41. Orr, R. K. et al. A modular synthesis of 2-alkyl- and 2-arylchromans via a three-step sequence. Synthesis 49, 657–666 (2017).

    Article  CAS  Google Scholar 

  42. Silvestri, R. et al. Imidazole analogues of fluoxetine, a novel class of anti-Candida agents. J. Med. Chem. 47, 3924–3926 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Deutsch, C. & Krause, N. CuH-catalyzed reactions. Chem. Rev. 108, 2916–2927 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Lipshutz, B. H. Rediscovering organocopper chemistry through copper hydride. It’s all about the ligand. Synlett 2009, 509–524 (2009).

    Article  Google Scholar 

  45. Guo, S., Zhu, J. & Buchwald, S. L. Enantioselective synthesis of β-amino acid derivatives enabled by ligand-controlled reversal of hydrocupration regiochemistry. Angew. Chem. Int. Ed. 59, 20841–20845 (2020).

    Article  CAS  Google Scholar 

  46. Zhu, S. L., Niljianskul, N. & Buchwald, S. L. A direct approach to amines with remote stereocentres by enantioselective CuH-catalysed reductive relay hydroamination. Nat. Chem. 8, 144–150 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Grigg, R. D., Van Hoveln, R. & Schomaker, J. M. Copper-catalyzed recycling of halogen activating groups via 1,3-halogen migration. J. Am. Chem. Soc. 134, 16131–16134 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang, Q., Jia, J.-F., Guo, C.-H. & Wu, H.-S. Mechanistic investigation of Cu(I)-mediated three-component domino reaction of asymmetrical alkynes with carbon dioxide: theoretical rationale for the regioselectivity. J. Organomet. Chem. 748, 84–88 (2013).

    Article  CAS  Google Scholar 

  49. Deng, X., Dang, Y., Wang, Z.-X. & Wang, X. How does an earth-abundant copper-based catalyst achieve anti-Markovnikov hydrobromination of alkynes? A DFT mechanistic study. Organometallics 35, 1923–1930 (2016).

    Article  CAS  Google Scholar 

  50. Kim, D., Rahaman, S. M. W., Mercado, B. Q., Poli, R. & Holland, P. L. Roles of iron complexes in catalytic radical alkene cross-coupling: a computational and mechanistic study. J. Am. Chem. Soc. 141, 7473–7485 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang, W. et al. Enantioselective cyanation of benzylic C–H bonds via copper-catalyzed radical relay. Science 353, 1014–1018 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen, J.-J. et al. Enantioconvergent Cu-catalysed N-alkylation of aliphatic amines. Nature 618, 294–300 (2023).

    Article  CAS  PubMed  Google Scholar 

  53. Chen, C. & Fu, G. C. Copper-catalysed enantioconvergent alkylation of oxygen nucleophiles. Nature 618, 301–307 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fu, N. et al. New bisoxazoline ligands enable enantioselective electrocatalytic cyanofunctionalization of vinylarenes. J. Am. Chem. Soc. 141, 14480–14485 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhu, R. & Buchwald, S. L. Enantioselective functionalization of radical intermediates in redox catalysis: copper-catalyzed asymmetric oxytrifluoromethylation of alkenes. Angew. Chem. Int. Ed. 52, 12655–12658 (2013).

    Article  CAS  Google Scholar 

  56. Dadashi-Silab, S. & Stache, E. E. A hydrometalation initiation mechanism via a discrete cobalt-hydride for a rapid and controlled radical polymerization. J. Am. Chem. Soc. 144, 13311–13318 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the Natural Science Foundation of China (22222101, 22350006 and 22171012), Beijing Natural Science Foundation (2242006) and Beijing National Laboratory of Molecular Sciences (BNLMS). Computation was supported by the high-performance computing platform of Peking University (PKU). We thank X. Zhang (PKU) and H. Fu (PKU) for assistance with NMR spectroscopy and Y. Qiu (PKU) for assistance with X-ray crystallography. H.H. and J.W. acknowledge the PKU President’s Fellowship for Undergraduate Research.

Author information

Authors and Affiliations

Contributions

R.Z. proposed the transformation. J.-J.W., H.H., H.-L.S., F.Y. and J.W. conducted the experimental investigation. R.Z. and J.-J.W. wrote the manuscript. R.Z. directed the research.

Corresponding author

Correspondence to Rong Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Shuanglin Qu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods and references.

Reporting Summary

Supplementary Data 1

The .cif file for compound 46.

Supplementary Data 2

The .hkl file for compound 46.

Supplementary Data 3

The checkCIF file for compound 46.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, JJ., Huang, H., Sun, HL. et al. Mimicking hydrogen-atom-transfer-like reactivity in copper-catalysed olefin hydrofunctionalization. Nat Catal 7, 838–846 (2024). https://doi.org/10.1038/s41929-024-01182-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-024-01182-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing