Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Wireless potentiometry of thermochemical heterogeneous catalysis

Abstract

The electrochemical potential of a catalyst defines the free-energy landscape of catalysis in liquid media and is readily measured for catalysts supported on conductive materials or wired to external circuits. However, the potential is difficult to quantify for thermochemical catalysts supported on electrical insulators, thereby impeding a unifying understanding of the role of electrochemical polarization during thermochemical catalysis. Here we develop a methodology to quantify the electrochemical potential of metal catalysts supported on insulators by introducing low concentrations of redox-active molecules that establish wireless electrical connections between the catalyst and a sensing electrode. Using this approach in tandem with simultaneous rate measurements, we demonstrate distinct rate-potential scalings for oxidative dehydrogenation of formic acid on SiO2-supported and Al2O3-supported versus TiO2-supported Pt and find deactivation modes specific to SiO2-supported Pt. These developments enable the comprehensive investigation of the role of electrochemical polarization in thermochemical catalysis and complement the existing toolkit for mechanistic investigation in catalysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Wired and wireless electrochemical potential measurement.
Fig. 2: Wireless potentiometry model system and measurement of catalyst potential.
Fig. 3: Tracking transients in catalyst potential.
Fig. 4: Potential measurement in neutral and alkaline water.
Fig. 5: Potential measurement in acetonitrile.
Fig. 6: Aerobic formic acid oxidation on supported Pt catalysts as a function of HCOOH concentration.
Fig. 7: Aerobic HCOOH oxidation on supported Pt catalysts with varying O2 partial pressure.
Fig. 8: Non-monotonic trends in Ecat and TOF over Pt/SiO2 during formic acid oxidation after lowering O2 partial pressure.

Similar content being viewed by others

Data availability

The data that support the findings of this study are included in the article and its Supplementary Information or from the corresponding author on reasonable request.

References

  1. Shangguan, J. & Chin, Y.-H. C. Kinetic significance of proton−electron transfer during condensed phase reduction of carbonyls on transition metal clusters. ACS Catal. 9, 1763–1778 (2019).

    Article  CAS  Google Scholar 

  2. Zhao, Z. et al. Solvent-mediated charge separation drives alternative hydrogenation path of furanics in liquid water. Nat. Catal. 2, 431–436 (2019).

    Article  CAS  Google Scholar 

  3. Zope, B. N., Hibbitts, D. D., Neurock, M. & Davis, R. J. Reactivity of the gold/water interface during selective oxidation catalysis. Science 330, 74–78 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Cheng, G. et al. Importance of interface open circuit potential on aqueous hydrogenolytic reduction of benzyl alcohol over Pd/C. Nat. Commun. 13, 7967 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wesley, T. S., Román-Leshkov, Y. & Surendranath, Y. Spontaneous electric fields play a key role in thermochemical catalysis at metal–liquid interfaces. ACS Cent. Sci. 7, 1045–1055 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ryu, J. et al. Thermochemical aerobic oxidation catalysis in water can be analysed as two coupled electrochemical half-reactions. Nat. Catal. 4, 742–752 (2021).

    Article  CAS  Google Scholar 

  7. Mallat, T. & Baiker, A. Catalyst potential measurement: a valuable tool for understanding and controlling liquid phase redox reactions. Top. Catal. 8, 115–124 (1999).

    Article  CAS  Google Scholar 

  8. Adams, J. S., Kromer, M. L., Rodríguez-López, J. & Flaherty, D. W. Unifying concepts in electro- and thermocatalysis toward hydrogen peroxide production. J. Am. Chem. Soc. 143, 7940–7957 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Bockris, J. O., Reddy, A. & Gamboa-Aldeco, M. Modern Electrochemistry 2A: Fundamentals of Electrodics (Springer, 2000).

  10. Tao, Q. et al. Interaction of C1 molecules with a Pt electrode at open circuit potential: a combined infrared and mass spectroscopic study. J. Phys. Chem. C 118, 6799–6808 (2014).

    Article  CAS  Google Scholar 

  11. DiCosimo, R. & Whitesides, G. M. Oxidation of 2-propanol to acetone by dioxygen on a platinized electrode under open-circuit conditions. J. Phys. Chem. 93, 768–775 (1989).

    Article  CAS  Google Scholar 

  12. Tokarev, A. V. et al. Kinetic behaviour of electrochemical potential in three-phase heterogeneous catalytic oxidation reactions. J. Mol. Catal. A 255, 199–208 (2006).

    Article  CAS  Google Scholar 

  13. Qi, X. et al. Potential–rate correlations of supported palladium-based catalysts for aqueous formic acid dehydrogenation. J. Am. Chem. Soc. 146, 9191–9204 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mallat, T. & Baiker, A. Oxidation of alcohols with molecular oxygen on platinum metal catalysts in aqueous solutions. Catal. Today 19, 247–283 (1994).

    Article  CAS  Google Scholar 

  15. Sauvé, E. R. et al. Open circuit potential decay transients quantify interfacial pH swings during high current density hydrogen electrocatalysis. Joule 8, 728–745 (2024).

    Article  Google Scholar 

  16. Vayenas, C. G. Bridging electrochemistry and heterogeneous catalysis. J. Solid State Electrochem. 15, 1425–1435 (2011).

    Article  CAS  Google Scholar 

  17. Lodaya, K. M. et al. An electrochemical approach for designing thermochemical bimetallic nitrate hydrogenation catalysts. Nat. Catal. 7, 262–272 (2024).

    Article  CAS  Google Scholar 

  18. Daniel, I. T. et al. Electrochemical polarization of disparate catalytic sites drives thermochemical rate enhancement. ACS Catal. 13, 14189–14198 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. van der Plas, J. F. & Barendrecht, E. Electrocatalytic hydrogenation processes at controlled potential—3. Measurement of the catalyst potential. Electrochim. Acta 25, 1477–1480 (1980).

    Article  Google Scholar 

  20. Howland, W. C., Gerken, J. B., Stahl, S. S. & Surendranath, Y. Thermal hydroquinone oxidation on Co/N-doped carbon proceeds by a band-mediated electrochemical mechanism. J. Am. Chem. Soc. 144, 11253–11262 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. An, H., Sun, G., Hülsey, M. J., Sautet, P. & Yan, N. Demonstrating the electron–proton-transfer mechanism of aqueous phase 4-nitrophenol hydrogenation using unbiased electrochemical cells. ACS Catal. 12, 15021–15027 (2022).

    Article  CAS  Google Scholar 

  22. Anson, C. W. & Stahl, S. S. Mediated fuel cells: soluble redox mediators and their applications to electrochemical reduction of O2 and oxidation of H2, alcohols, biomass, and complex fuels. Chem. Rev. 120, 3749–3786 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stergiou, A. D. & Symes, M. D. Organic transformations using electro-generated polyoxometalate redox mediators. Catal. Today 384–386, 146–155 (2022).

    Article  Google Scholar 

  24. Adams, J. S. et al. Solvent molecules form surface redox mediators in situ and cocatalyze O2 reduction on Pd. Science 371, 626–632 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Kummer, J. T. & Oei, D. G. A chemically regenerative redox fuel cell. J. Appl. Electrochem. 12, 87–100 (1982).

    Article  CAS  Google Scholar 

  26. Westendorff, K. S., Hülsey, M. J., Wesley, T. S., Román-Leshkov, Y. & Surendranath, Y. Electrically driven proton transfer promotes Brønsted acid catalysis by orders of magnitude. Science 383, 757–763 (2024).

    Article  CAS  PubMed  Google Scholar 

  27. Hoque, M. A., Gerken, J. B. & Stahl, S. S. Synthetic dioxygenase reactivity by pairing electrochemical oxygen reduction and water oxidation. Science 383, 173–178 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bates, J. S. et al. Chemical and electrochemical O2 reduction on earth-abundant M-N-C catalysts and implications for mediated electrolysis. J. Am. Chem. Soc. 144, 922–927 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. To-A-Ran, W., Mastoi, N. R., Ha, C. Y., Song, Y. J. & Kim, Y.-J. Kelvin probe force microscopy and electrochemical atomic force microscopy investigations of lithium nucleation and growth: influence of the electrode surface potential. J. Phys. Chem. Lett. 15, 7265–7271 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Luo, B. et al. Triboelectric charge-separable probes for quantificationally charge investigating at the liquid-solid interface. Nano Energy 113, 108532 (2023).

    Article  CAS  Google Scholar 

  31. Xu, X. et al. Electrochemical imaging of thermochemical catalysis. Preprint at ChemRxiv https://doi.org/10.26434/chemrxiv-2024-0ws9m (2024).

  32. Zhao, Y. et al. Electrochemical screening of Au/Pt catalysts for the thermocatalytic synthesis of hydrogen peroxide based on their oxygen reduction and hydrogen oxidation activities probed via voltammetric scanning electrochemical microscopy. ACS Sustain. Chem. Eng. 10, 17207–17220 (2022).

    Article  CAS  Google Scholar 

  33. Sun, Y., Dai, Y., Liu, Y. & Chen, S. A rotating disk electrode study of the particle size effects of Pt for the hydrogen oxidation reaction. Phys. Chem. Chem. Phys. 14, 2278–2285 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Durst, J., Simon, C., Hasché, F. & Gasteiger, H. A. Hydrogen oxidation and evolution reaction kinetics on carbon supported Pt, Ir, Rh, and Pd electrocatalysts in acidic media. J. Electrochem. Soc. 162, F190 (2015).

    Article  CAS  Google Scholar 

  35. Roberts, J. A. S. & Bullock, R. M. Direct determination of equilibrium potentials for hydrogen oxidation/production by open circuit potential measurements in acetonitrile. Inorg. Chem. 52, 3823–3835 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Pope, M. T., Varga, G. M. J. & Heteropoly Blues, I. Reduction stoichiometries and reduction potentials of some 12-tungstates. Inorg. Chem. 5, 1249–1254 (1966).

    Article  CAS  Google Scholar 

  37. Mallat, T., Bodnar, Z. & Baiker, A. Partial oxidation of water-insoluble alcohols over Bi-promoted Pt on alumina. Electrochemical characterization of the catalyst in its working state. Stud. Surf. Sci. Catal. 78, 377–384 (1993).

    Article  CAS  Google Scholar 

  38. Conway, B. E. & Tilak, B. V. Behavior and characterization of kinetically involved chemisorbed intermediates in electrocatalysis of gas evolution reactions. Adv. Catal. 38, 1–147 (1992).

    Article  CAS  Google Scholar 

  39. Batista, B. C. & Varela, H. Open circuit interaction of formic acid with oxidized Pt surfaces: experiments, modeling, and simulations. J. Phys. Chem. C 114, 18494–18500 (2010).

    Article  CAS  Google Scholar 

  40. Fish, M. J. & Ollis, D. F. Characterization of enantioselective hydrogenation catalysts: transient electrochemical oxidation of d-(+)-tartaric acid on nickel. J. Catal. 50, 353–363 (1977).

  41. Jürgensen, A. & Moffat, J. B. The stability of 12-molybdosilicic, 12-tungstosilicic, 12-molybdophosphoric and 12-tungstophosphoric acids in aqueous solution at various pH. Catal. Lett. 34, 237–244 (1995).

    Article  Google Scholar 

  42. Michaelis, L. & Hill, E. S. The viologen indicators. J. Gen. Physiol. 16, 859–873 (1933).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ito, M. & Kuwana, T. Spectroelectrochemical study of indirect reduction of triphosphopyridine nucleotide. I. Methyl viologen, ferredoxin-TPN-reductase and TPN. J. Electroanal. Chem. 32, 415–425 (1971).

    Article  CAS  Google Scholar 

  44. Bird, C. L. & Kuhn, A. T. Electrochemistry of the viologens. Chem. Soc. Rev. 10, 49–82 (1981).

    Article  CAS  Google Scholar 

  45. Venturi, M., Mulazzani, Q. G. & Hoffman, M. Z. Radiolytically-induced one-electron reduction of methyl viologen in aqueous solution: stability of the radical cation in acidic and highly alkaline media. Radiat. Phys. Chem. 23, 229–236 (1984).

    CAS  Google Scholar 

  46. Datta, M., Jansson, R. E. & Freeman, J. J. In situ resonance Raman spectroscopic characterization of electrogenerated methyl viologen radical cation on carbon electrode. Appl. Spectrosc. 40, 251–258 (1986).

    Article  CAS  Google Scholar 

  47. Michaelis, L. Occurrence and significance of semiquinone radicals. Ann. N. Y. Acad. Sci. 40, 39–76 (1940).

    Article  Google Scholar 

  48. Kütt, A. et al. Strengths of acids in acetonitrile. Eur. J. Org. Chem. 2021, 1407–1419 (2021).

    Article  Google Scholar 

  49. Izutsu, K. AcidBase Dissociation Constants in Dipolar Aprotic Solvents (Blackwell, 1990).

  50. Pegis, M. L. et al. Standard reduction potentials for oxygen and carbon dioxide couples in acetonitrile and N,N-dimethylformamide. Inorg. Chem. 54, 11883–11888 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Chheda, J. N., Huber, G. W. & Dumesic, J. A. Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew. Chem. Int. Ed. 46, 7164–7183 (2007).

    Article  CAS  Google Scholar 

  52. Guo, Z. et al. Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry. Chem. Soc. Rev. 43, 3480–3524 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Peper, J. L., Gentry, N. E., Boudy, B. & Mayer, J. M. Aqueous TiO2 nanoparticles react by proton-coupled electron transfer. Inorg. Chem. 61, 767–777 (2022).

    Article  CAS  PubMed  Google Scholar 

  54. Freund, M. S. & Lewis, N. S. Irreversible electrocatalyic reduction of V(V) to V(IV) using phosphomolybdic acid. Inorg. Chem. 33, 1638–1643 (1994).

    Article  CAS  Google Scholar 

  55. Oh, H. et al. Phosphomolybdic acid as a catalyst for oxidative valorization of biomass and its application as an alternative electron source. ACS Catal. 10, 2060–2068 (2020).

    Article  CAS  Google Scholar 

  56. Tanaka, N., Unoura, K. & Itabashi, E. Voltammetric and spectroelectrochemical studies of dodecamolybdophosphoric acid in aqueous and water-dioxane solutions at a gold-minigrid optically transparent thin-layer electrode. Inorg. Chem. 21, 1662–1666 (1982).

    Article  CAS  Google Scholar 

  57. Flaherty, D. W. & Bhan, A. Improving the rigor and reproducibility of catalyst testing and evaluation in the laboratory. J. Catal. 431, 115408 (2024).

    Article  CAS  Google Scholar 

  58. Baz, A. & Holewinski, A. Predicting macro-kinetic observables in electrocatalysis using the generalized degree of rate control. J. Catal. 397, 233–244 (2021).

    Article  CAS  Google Scholar 

  59. Lović, J. D. et al. Kinetic study of formic acid oxidation on carbon-supported platinum electrocatalyst. J. Electroanal. Chem. 581, 294–302 (2005).

    Article  Google Scholar 

  60. Zhu, X. & Huang, J. Modeling electrocatalytic oxidation of formic acid at platinum. J. Electrochem. Soc. 167, 13515 (2020).

    Article  CAS  Google Scholar 

  61. Baddour, R. F., Modell, M. & Goldsmith, R. L. Palladium-catalyzed carbon monoxide oxidation. Catalyst ‘break-in’ phenomenon. J. Phys. Chem. 74, 1787–1796 (1970).

    Article  CAS  Google Scholar 

  62. Xu, P., Bernal-Juan, F. D. & Lefferts, L. Effect of oxygen on formic acid decomposition over Pd catalyst. J. Catal. 394, 342–352 (2021).

    Article  CAS  Google Scholar 

  63. Ide, M. S., Falcone, D. D. & Davis, R. J. On the deactivation of supported platinum catalysts for selective oxidation of alcohols. J. Catal. 311, 295–305 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the entire Surendranath Lab for their support and scientific discussions. This work was supported by the Gordon and Betty Moore Foundation, under grant ID: GBMF11510 (https://doi.org/10.37807/GBMF11510). N.K.R. is grateful for the generous support from the Arnold O. Beckman Postdoctoral Fellowship. K.S.W. acknowledges support from the National Science Foundation Graduate Research Fellowship under Grant No. 174530.

Author information

Authors and Affiliations

Authors

Contributions

N.K.R. and Y.S. conceived the research and developed the experiments. N.K.R. conducted the majority of the experiments. K.S.W. conducted characterization experiments, O2 reaction order experiments and contributed to data analysis. N.K.R., K.S.W. and Y.S. wrote the paper.

Corresponding author

Correspondence to Yogesh Surendranath.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Steven McIntosh, Kotaro Takeyasu and Bin Zhang for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–24, Tables 1 and 2 and references.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razdan, N.K., Westendorff, K.S. & Surendranath, Y. Wireless potentiometry of thermochemical heterogeneous catalysis. Nat Catal 8, 315–327 (2025). https://doi.org/10.1038/s41929-025-01308-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-025-01308-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing