Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Self-assembling peptides

AI in biomaterials discovery: generating self-assembling peptides with resource-efficient deep learning

This article has been updated

Recurrent neural networks are efficient and capable agents for discovering new peptides with strong self-organizing capabilities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Using hybrid RNN models to discover new self-assembling peptides.

Change history

  • 12 December 2024

    In the version of the article initially published, Marko Njirjak’s surname was misspelled throughout the article and in ref. 1 (as Njirnak) and has now been amended in the HTML and PDF versions of the article.

References

  1. Njirjak, M. et al. Nat. Mach. Intell. https://doi.org/10.1038/s42256-024-00928-1 (2024).

    Article  Google Scholar 

  2. Lampel, A. Chem 6, 1222–1236 (2020).

    Article  Google Scholar 

  3. Janković, P., Šantek, I., Pina, A. S. & Kalafatovic, D. Frontiers Chem. 9, 723473 (2021).

    Article  Google Scholar 

  4. Torres, M. D. T. et al. Cell 187, 5453–5467 (2024).

    Article  Google Scholar 

  5. Porto, W. F. et al. Nat. Commun. 9, 1490 (2018).

    Article  Google Scholar 

  6. Wan, F., Torres, M. D. T., Peng, J. & de la Fuente-Nunez, C. Nat. Biomed. Eng. 8, 854–871 (2024).

    Article  Google Scholar 

  7. Santos-Júnior, C. D. et al. Cell 187, 3761–3778 (2024).

    Article  Google Scholar 

  8. Wong, F., de la Fuente-Nunez, C. & Collins, J. J. Science 381, 164–170 (2023).

    Article  MathSciNet  Google Scholar 

  9. Lampel, A., Ulijn, R. & Tuttle, T. Chem. Soc. Rev. 4, 3737–3758 (2018).

    Article  Google Scholar 

  10. Levin, A. et al. Nat. Rev. Chem. 4, 615–634 (2020).

    Article  Google Scholar 

  11. Chatterjee, A., Reja, A., Pal, S. & Das, D. Chem. Soc. Rev. 51, 3047–3070 (2022).

    Article  Google Scholar 

  12. Batra, R. et al. Nat. Chem. 14, 1427–1435 (2022).

    Article  Google Scholar 

  13. Pierce, N. A. & Winfree, E. Protein Eng. 15, 779–782 (2002).

    Article  Google Scholar 

  14. Gocheva, G., Peneva, K. & Ivanova, A. Chem. Phys. 525, 110380 (2019).

    Article  Google Scholar 

  15. Frederix, P. W. et al. Nat. Chem. 7, 30–37 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cesar de la Fuente-Nunez.

Ethics declarations

Competing interests

C.d.l.F.-N. provides consulting services to Invaio Sciences and is a member of the scientific advisory boards of Nowture S.L., Peptidus, European Biotech Venture Builder and Phare Bio, as well as the advisory board of the Peptide Drug Hunting Consortium (PDHC).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leng, T., de la Fuente-Nunez, C. AI in biomaterials discovery: generating self-assembling peptides with resource-efficient deep learning. Nat Mach Intell 6, 1429–1430 (2024). https://doi.org/10.1038/s42256-024-00936-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42256-024-00936-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing