Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chronic social stress induces p16-mediated senescent cell accumulation in mice

Abstract

Life stress can shorten lifespan and increase risk for aging-related diseases, but the biology underlying this phenomenon remains unclear. Here we assessed the effect of chronic stress on cellular senescence—a hallmark of aging. Exposure to restraint stress, a psychological non-social stress model, increased p21Cip1 exclusively in the brains of male, but not female mice, and in a p16Ink4a-independent manner. Conversely, exposure to chronic subordination stress (only males were tested) increased key senescent cell markers in peripheral blood mononuclear cells, adipose tissue and brain, in a p16Ink4a-dependent manner. p16Ink4a-positive cells in the brain of chronic subordination stress-exposed mice were primarily hippocampal and cortical neurons with evidence of DNA damage that could be reduced by p16Ink4a cell clearance. Clearance of p16Ink4a-positive cells was not sufficient to ameliorate the adverse effects of social stress on measured metrics of healthspan. Overall, our findings indicate that social stress induces an organ-specific and p16Ink4a-dependent accumulation of senescent cells, illuminating a fundamental way by which the social environment can contribute to aging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effect of CSS or CRS on SNC markers and SASP in PBMCs and peripheral organs.
Fig. 2: Effect of CSS or CRS on SNC markers and SASP in the hippocampus and cortex.
Fig. 3: Quantitative and qualitative identification of p16/p21-positive cells using in situ hybridization.
Fig. 4: CSS increases the accumulation of p16-positive neurons in the brain.
Fig. 5: Transcriptomic profiling of CSS-induced SNCs and their microenvironment.
Fig. 6: CSS induces DNA damage in the hippocampus and cortex.

Similar content being viewed by others

Data availability

All data reported in this paper are available via figshare at https://doi.org/10.6084/m9.figshare.26236583.v1 (ref. 90). The sequencing data have been deposited in NCBI’s Gene Expression Omnibus and are accessible through GEO Series accession number GSE278620. All data are available from the corresponding author upon request.

References

  1. Yuede, C. M. et al. Interactions between stress and physical activity on Alzheimer’s disease pathology. Neurobiol. Stress 8, 158–171 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hemmerle, A. M., Herman, J. P. & Seroogy, K. B. Stress, depression and Parkinson’s disease. Exp. Neurol. 233, 79–86 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Gu, H. F., Tang, C. K. & Yang, Y. Z. Psychological stress, immune response, and atherosclerosis. Atherosclerosis 223, 69–77 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Harris, M. L. et al. Stress increases the risk of type 2 diabetes onset in women: a 12-year longitudinal study using causal modelling. PLoS ONE 12, e0172126 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kivimäki, M., Bartolomucci, A. & Kawachi, I. The multiple roles of life stress in metabolic disorders. Nat. Rev. Endocrinol. 19, 10–27 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Razzoli, M., Nyuyki-Dufe, K., Chen, B. H. & Bartolomucci, A. Contextual modifiers of healthspan, lifespan, and epigenome in mice under chronic social stress. Proc. Natl Acad. Sci. USA 120, e2211755120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Marzi, S. J. et al. Analysis of DNA methylation in young people: limited evidence for an association between victimization stress and epigenetic variation in blood. Am. J. Psychiatry 175, 517–529 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Epel, E. S. & Prather, A. A. Stress, telomeres, and psychopathology: toward a deeper understanding of a triad of early aging. Annu. Rev. Clin. Psychol. 14, 371–397 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lyons, C. E., Razzoli, M. & Bartolomucci, A. The impact of life stress on hallmarks of aging and accelerated senescence: connections in sickness and in health. Neurosci. Biobehav. Rev. 153, 105359 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ni, Y. et al. Activation of β2-adrenergic receptor stimulates γ-secretase activity and accelerates amyloid plaque formation. Nat. Med. 12, 1390–1396 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Koolhaas, J. M. et al. Stress revisited: a critical evaluation of the stress concept. Neurosci. Biobehav. Rev. 35, 1291–1301 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Ulrich-Lai, Y. M. & Herman, J. P. Neural regulation of endocrine and autonomic stress responses. Nat. Rev. Neurosci. 10, 397–409 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Takahashi, A., Flanigan, M. E., McEwen, B. S. & Russo, S. J. Aggression, social stress, and the immune system in humans and animal models. Front. Behav. Neurosci. 12, 56 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kivimäki, M. & Steptoe, A. Effects of stress on the development and progression of cardiovascular disease. Nat. Rev. Cardiol. 15, 215–229 (2018).

    Article  PubMed  Google Scholar 

  15. Epel, E. S. et al. Accelerated telomere shortening in response to life stress. Proc. Natl Acad. Sci. USA 101, 17312–17315 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Aschbacher, K. et al. Good stress, bad stress and oxidative stress: insights from anticipatory cortisol reactivity. Psychoneuroendocrinology 38, 1698–1708 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cherkas, L. F. et al. The effects of social status on biological aging as measured by white-blood-cell telomere length. Aging Cell 5, 361–365 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Mansur, R. B. et al. Socioeconomic disadvantage moderates the association between peripheral biomarkers and childhood psychopathology. PLoS ONE https://doi.org/10.1371/journal.pone.0160455 (2016).

  19. Rentscher, K. E. et al. Chronic stress exposure and daily stress appraisals relate to biological aging marker p16 INK4a. Psychoneuroendocrinology 102, 139–148 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Razzoli, M. et al. Social stress shortens lifespan in mice. Aging Cell 17, e12778 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Demaria, M. et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev. Cell 31, 722–733 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Grosse, L. et al. Defined p16High senescent cell types are indispensable for mouse healthspan. Cell Metab. 32, 87–99.e6 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Childs, B. G. et al. Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science 354, 472–477 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bussian, T. J. et al. Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature 562, 578–582 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jeon, O. H. et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat. Med. 23, 775–781 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Musi, N. et al. Tau protein aggregation is associated with cellular senescence in the brain. Aging Cell https://doi.org/10.1111/acel.12840 (2018).

  27. Zhang, P. et al. Senolytic therapy alleviates Aβ-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer’s disease model. Nat. Neurosci. 22, 719–728 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. de Magalhães, J. P. Cellular senescence in normal physiology. Science 384, 1300–1301 (2024).

    Article  PubMed  Google Scholar 

  29. Gorgoulis, V. et al. Cellular senescence: defining a path forward. Cell https://doi.org/10.1016/j.cell.2019.10.005 (2019).

  30. Suryadevara, V. et al. SenNet recommendations for detecting senescent cells in different tissues. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-024-00738-8 (2024).

  31. Rodier, F. et al. Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat. Cell Biol. 11, 973–979 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Coppé, J.-P., Desprez, P.-Y., Krtolica, A. & Campisi, J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5, 99–118 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Campisi, J. & d’Adda di Fagagna, F. Cellular senescence: when bad things happen to good cells. Nat. Rev. Mol. Cell Biol. 8, 729–740 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Lin, A. W. et al. Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev. 12, 3008–3019 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Di Micco, R. et al. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444, 638–642 (2006).

    Article  PubMed  Google Scholar 

  36. Muñoz-Espín, D. et al. Programmed cell senescence during mammalian embryonic development. Cell 155, 1104 (2013).

    Article  PubMed  Google Scholar 

  37. Ferrucci, L. & Fabbri, E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 15, 505–522 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gonzales, M. M. et al. Senolytic therapy in mild Alzheimer’s disease: a phase 1 feasibility trial. Nat. Med. 29, 2481–2488 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lin, Y. et al. Circulating monocytes expressing senescence-associated features are enriched in COVID-19 patients with severe disease. Aging Cell 22, e14011 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Robbins, P. D. et al. Senolytic drugs: reducing senescent cell viability to extend health span. Annu. Rev. Pharmacol. Toxicol. 61, 779–803 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Kim, E. C. & Kim, J. R. Senotherapeutics: emerging strategy for healthy aging and age-related disease. BMB Rep. 52, 47 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Childs, B. G. et al. Senescent cells: an emerging target for diseases of ageing. Nat. Rev. Drug Discovery 16, 718–735 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Buynitsky, T. & Mostofsky, D. I. Restraint stress in biobehavioral research: recent developments. Neurosci. Biobehav. Rev. 33, 1089–1098 (2009).

    Article  PubMed  Google Scholar 

  44. Razzoli, M., Karsten, C., Yoder, J. M., Bartolomucci, A. & Engeland, W. C. Chronic subordination stress phase advances adrenal and anterior pituitary clock gene rhythms. Am. J. Physiol. 307, R198–R205 (2014).

    CAS  Google Scholar 

  45. Razzoli, M. et al. Social stress is lethal in the mdx model of Duchenne muscular dystrophy. EBioMedicine 55, 102700 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bartolomucci, A. et al. Behavioral and physiological characterization of male mice under chronic psychosocial stress. Psychoneuroendocrinology 29, 899–910 (2004).

    Article  PubMed  Google Scholar 

  47. Sanghez, V. et al. Psychosocial stress induces hyperphagia and exacerbates diet-induced insulin resistance and the manifestations of the metabolic syndrome. Psychoneuroendocrinology 38, 2933–2942 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Cherry, C. et al. Transfer learning in a biomaterial fibrosis model identifies in vivo senescence heterogeneity and contributions to vascularization and matrix production across species and diverse pathologies. GeroScience https://doi.org/10.1007/S11357-023-00785-7 (2023).

  49. Liu, Y. et al. Expression of p16INK4a in peripheral blood T-cells is a biomarker of human aging. Aging Cell 8, 439–448 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Dimri, G. P. et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl Acad. Sci. USA 92, 9363–9367 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schafer, M. J. et al. Exercise prevents diet-induced cellular senescence in adipose tissue. Diabetes 65, 1606–1615 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Piechota, M. et al. Is senescence-associated β-galactosidase a marker of neuronal senescence? Oncotarget 7, 81099 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ogrodnik, M. et al. Whole-body senescent cell clearance alleviates age-related brain inflammation and cognitive impairment in mice. Aging Cell 20, e13296 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Omori, S. et al. Generation of a p16 reporter mouse and its use to characterize and target p16high cells in vivo. Cell Metab. 32, 814–828.e6 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Gurkar, A. U. et al. Spatial mapping of cellular senescence: emerging challenges and opportunities. Nat. Aging 3, 776–790 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bobba-Alves, N. et al. Cellular allostatic load is linked to increased energy expenditure and accelerated biological aging. Psychoneuroendocrinology https://doi.org/10.1016/j.psyneuen.2023.106322 (2023).

  57. Razzoli, M. & Bartolomucci, A. The dichotomous effect of chronic stress on obesity. Trends Endocrinol. Metab. 27, 504–515 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Saul, D. et al. A new gene set identifies senescent cells and predicts senescence-associated pathways across tissues. Nat. Commun. 13, 4827 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hernandez-Segura, A. et al. Unmasking transcriptional heterogeneity in senescent cells. Current Biology 27, 2652–2660.e4 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Steptoe, A. & Zaninotto, P. Lower socioeconomic status and the acceleration of aging: an outcome-wide analysis. Proc. Natl Acad. Sci. USA 117, 14911–14917 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 86, 243–278 (2023).

    Article  Google Scholar 

  62. Olave, F. A. et al. Chronic restraint stress produces sex-specific behavioral and molecular outcomes in the dorsal and ventral rat hippocampus. Neurobiol. Stress 17, 100440 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Galea, L. A. M. et al. Sex differences in dendritic atrophy of CA3 pyramidal neurons in response to chronic restraint stress. Neuroscience 81, 689–697 (1997).

    Article  CAS  PubMed  Google Scholar 

  64. Smith, A. et al. Metabolic, neuroendocrine and behavioral effects of social defeat in male and female mice using the chronic non-discriminatory social defeat stress model. Horm. Behav. 155, 105412 (2023).

    Article  CAS  PubMed  Google Scholar 

  65. Harris, A. Z. et al. A novel method for chronic social defeat stress in female mice. Neuropsychopharmacology 43, 1276–1283 (2018).

    Article  PubMed  Google Scholar 

  66. Takahashi, A. et al. Establishment of a repeated social defeat stress model in female mice. Sci. Rep. 7, 12838 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Snyder-Mackler, N. et al. Social determinants of health and survival in humans and other animals. Science 368, eaax9553 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Molina, P., Andero, R. & Armario, A. Restraint or immobilization: a comparison of methodologies for restricting free movement in rodents and their potential impact on physiology and behavior. Neurosci. Biobehav. Rev. 151, 105224 (2023).

    Article  PubMed  Google Scholar 

  69. Atrooz, F., Alkadhi, K. A. & Salim, S. Understanding stress: insights from rodent models. Curr. Res. Neurobiol. 2, 100013 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nascaa, C. et al. Stress dynamically regulates behavior and glutamatergic gene expression in hippocampus by opening a window of epigenetic plasticity. Proc. Natl Acad. Sci. USA 112, 14960–14965 (2015).

    Article  Google Scholar 

  71. Herdy, J. R. et al. Increased post-mitotic senescence in aged human neurons is a pathological feature of Alzheimer’s disease. Cell Stem Cell 29, 1637–1652.e6 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Melo dos Santos, L. S., Trombetta-Lima, M., Eggen, B. J. L. & Demaria, M. Cellular senescence in brain aging and neurodegeneration. Ageing Res. Rev. 93, 102141 (2024).

    Article  CAS  PubMed  Google Scholar 

  73. Herdy, J. R., Mertens, J. & Gage, F. H. Neuronal senescence may drive brain aging. Science 384, 1404–1406 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Whitehead, J. C. et al. A clinical frailty index in aging mice: comparisons with frailty index data in humans. J. Gerontol. Ser. A 69, 621–632 (2014).

    Article  Google Scholar 

  75. Kang, C. et al. The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4. Science 349, aaa5612 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Molofsky, A. V. et al. Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature 443, 448–452 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Eskiocak, S. et al. Glutathione and free sulphydryl content of seminal plasma in healthy medical students during and after exam stress. Hum. Reprod. 20, 2595–2600 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Bagchi, M. et al. Acute and chronic stress-induced oxidative gastrointestinal injury in rats, and the protective ability of a novel grape seed proanthocyanidin extract. Nutr. Res. 19, 1189–1199 (1999).

    Article  CAS  Google Scholar 

  79. Rezatabar, S. et al. RAS/MAPK signaling functions in oxidative stress, DNA damage response and cancer progression. J. Cell. Physiol. 234, 14951–14965 (2019).

    Article  CAS  PubMed  Google Scholar 

  80. Colaianna, M. et al. Neuroendocrine profile in a rat model of psychosocial stress: relation to oxidative stress. Antioxid. Redox Signal. 18, 1385–1399 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Schiavone, S. et al. NADPH oxidase elevations in pyramidal neurons drive psychosocial stress-induced neuropathology. Transl. Psychiatry 2, e111 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Son, S. W. et al. Testosterone depletion increases the susceptibility of brain tissue to oxidative damage in a restraint stress mouse model. J. Neurochem. 136, 106–117 (2016).

    Article  CAS  PubMed  Google Scholar 

  83. Coppé, J. P. et al. Tumor suppressor and aging biomarker p16 INK4a induces cellular senescence without the associated inflammatory secretory phenotype. J. Biol. Chem. 286, 36396–36403 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Kwon, H. S. & Koh, S. H. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl. Neurodegen. 9, 1–12 (2020).

    Google Scholar 

  85. Sebastian-Valverde, M. & Pasinetti, G. M. The NLRP3 inflammasome as a critical actor in the inflammaging process. Cells 9, 1–28 (2020).

    Article  Google Scholar 

  86. Cole, S. W. The conserved transcriptional response to adversity. Curr. Opin. Behav. Sci. 28, 31–37 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Torrance, B. L. et al. Cellular senescence is a double-edged sword in regulating aged immune responses to influenza. Aging Cell 23, e14162 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lyons, C. E. et al. Chronic social and psychological stress impact select neuropathologies in the PS19 mouse model of tauopathy. Psychosom. Med. 86, 366–378 (2024).

    Article  CAS  PubMed  Google Scholar 

  89. Erben, L., He, M.-X., Laeremans, A., Park, E. & Buonanno, A. A novel ultrasensitive in situ hybridization approach to detect short sequences and splice variants with cellular resolution. Mol. Neurobiol. 55, 6169–6181 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Razzoli, M. & Bartolomucci, A. Lyons_et_al_2024. figshare https://doi.org/10.6084/m9.figshare.26236583.v1 (2024).

Download references

Acknowledgements

We dedicate this paper to the memory of Judith (Judy) Campisi, a giant in the field who kindly shared the p16-3MR mice and provided feedback during the execution of the research described in this paper. We also thank P. Rothwell for training and crucial support with the RNAscope experiments and G. Caviola, M. Berg and N. Sabarinathan for their assistance with the in vivo studies. The spatial transcriptomics workflow was carried out with the resources of and substantial assistance from C. Forster at the University of Minnesota Histology Core, G. Barthel at the University of Minnesota Imaging Center (UIC) SCR.020997 and F. Rodriguez at the University of Minnesota Genomics Center. C. Forster is also acknowledged for help provided with the γH2AX staining. The staff of the Research Animal Resources at the University of Minnesota are also acknowledged for their instrumental role in animal care on a daily basis. The project was supported by the MN Partnership for Biotechnology and Molecular Genomics #18.04 (A.B., J.M.v.D. and D.J.B.) and #19.02 (L.J.N.), which purchased the Nanostring GeoMx Digital Spatial Profiler, NIH R61/R33 AG078520 (A.B.), R01 HL151740 (A.B.), T32 AG029796 (C.M.L.), T32 DK083250 (J.P.P.), U54 AG076041 (A.B. and L.J.N.), U54 AG079754 (A.B. and L.J.N.), R01 AG063543 (L.J.N.), R01 HL166843 (J.W.W.), R01 AI165553 (J.W.W.) and Glenn Foundation for Medical Research (D.J.B.).

Author information

Authors and Affiliations

Authors

Contributions

The study was conceived by C.E.L. and A.B. C.E.L., J.P.P., S.M., R.P.M., C.W.C., M.J.Y., P.R.S. and M.R. performed experiments under the supervision of A.B., J.W.W. and L.J.N. C.E.L. and M.R. analyzed the data and assembled the figures. D.J.B. and J.M.v.D. shared mouse models and supported the development of the project. C.E.L. and A.B. drafted and edited the manuscript with the input and review by all authors. All authors reviewed the manuscript.

Corresponding author

Correspondence to Alessandro Bartolomucci.

Ethics declarations

Competing interests

D.J.B. and J.M.v.D. have a potential financial interest related to this research. J.M.v.D. is a cofounder of Unity Biotechnology, D.J.B. and J.M.v.D. are co-inventors on patents held by Mayo Clinic and patent applications licensed to or filed by Unity Biotechnology, and D.J.B. and J.M.v.D. are Unity shareholders. Research in the Baker laboratory has been reviewed by the Mayo Clinic Conflict of Interest Review Board and is being conducted in compliance with Mayo Clinic Conflict of Interest policies. The other authors declare no conflicts of interest.

Peer review

Peer review information

Nature Aging thanks Ifeoluwa Awogbindin, Victor Lau, Martin Picard, Marie-Eve Tremblay and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Flow cytometry gating scheme.

Flow cytometry gating scheme used to identify major immune cell subsets (CD45 + ) in peripheral blood; including neutrophils (Ly6G + CD11b + ), Ly6C+ classical monocytes (Ly6C + CD115 + CD11b + Ly6G-), Ly6C- nonclassical monocytes (Ly6C- CD115 + CD11b + Ly6G-), B cells (CD19 + Ly6G- CD115-), CD4 T cells (CD4+ TCRb+ Ly6G- CD115-), and CD8 T cells (CD4+ TCRb+ Ly6G- CD115-).

Extended Data Fig. 2 Senescence-associated β-galactosidase (SA β-gal).

A-D) Representative gross images of subcutaneous white adipose tissue (scWAT), Liver, Kidney, Hippocampus, and Cortex of control (ctrl) and Chronic Subordination Stress (CSS) mice following senescence-associated β-galactosidase staining. A-C) CSS mice have significantly more SA β-gal positive cells in the scWAT than control mice (p = 0.001). Unpaired, two-sided t test. Ctrl N = 3; CSS N = 4. A-D) No significant difference between control and CSS mice in SA β-gal staining in the liver, kidney, liver, hippocampus or cortex. Unpaired, two-sided t test. Ctrl N = 3; CSS N = 4 * indicates p < 0.05. Scale bars represent 50 μm unless otherwise specified. Histogram bars represent group mean. Error bars represent standard error of the mean (SEM). Scale bars represent 1 mm.

Extended Data Fig. 3 RNAscope representative images in animals exposed to Chronic Subordination Stress (CSS).

A) 10x DAPI stitched images of entire sagittal sections showing boxed regions of interest at various medial-lateral positions in which they appear. B) 60x fields of view captured from regions of high p16/p21 expression (CA3 – hippocampus and somatosensory cortex) and regions with negligible p16/p21 expression (BST – bed nucleus of stria terminalis | PVN – paraventricular nucleus | LC – locus coeruleus | MEA – medial amygdala nucleus) showing DAPI, Rbfox3 (neurons), p21, and p16. Scale bars represent 50μM. Experiment was repeated twice with similar results; second pass was to have a cohort large enough for valid statistical analysis.

Extended Data Fig. 4 Effect of Chronic Subordination Stress (CSS) or Chronic Restraint Stress (CRS) on gene expression.

A-D) Senescence/senescence associated secretory phenotype (SASP)-related gene expression in the CSS exposed mice. E-F) Senescence/SASP-related gene expression in the lung and liver in animals exposed to CRS. Control + vehicle (Ctrl+veh) N = 6; ctrl + ganciclovir (GCV) N = 5; CSS+veh N = 14; CSS + GCV N = 11; CRS+veh N = 9; CRS + GCV N = 5; G) CSS + GCV group had significantly higher expression of IL1B than ctrl (p = 0.046). G-H) Senescence/SASP-related gene expression in the hippocampus and cortex of CRS exposed female mice. Ctrl+veh N = 5; ctrl+GCV N = 4; CRS+veh N = 6; CRS + GCV N = 5. 2-way ANOVA, Tukey post hoc. * indicates p < 0.05. Histogram bars represent group mean. Shaded bars represent GCV treatment groups. Error bars represent standard error of the mean (SEM).

Extended Data Fig. 5 Histological analysis of p16CreERT2;Ai14 mice.

A) Tamoxifen (Tam) is required for tdTomato (TdTom) expression in p16CreERT2;Ai14 mice. Control (Ctrl) Tam- N = 5, ctrl Tam+ N = 5 (p = 0.017). Two-sided, unpaired t-test. Histogram bars represent group mean. Error bars represent standard error. B) Representative images of tdTom+ cells co-stained with NeuN (neurons), and GFAP+ (astrocytes), Iba1+ (microglia), and NG2+ (oligodendrocytes precursors, OPCs) cells which were all negative for TdTom; multi-staining repeated twice with consistent results. Scale bars represent 30 µm. **p < 0.01.

Extended Data Fig. 6 Gene set enrichment analysis (GSEA).

GSEA for the Hernandez-Segura et al.70 gene set (genes represented in Hernandez-Segura’s list = 52) in mouse whole brain (A-C) or hippocampus (B-D). GSEA mRNA expression levels using the SenMayo9 gene set (genes represented in SenMayo’s list = 118) in mouse whole brain (E-F) or hippocampus (G-H). X axis represents: (A-B and E-F) chronic subordination stress (CSS)/control level; (C-D and G-H) CSS high p16 expressing/CSS low p16 expressing. Y axis represents the enrichment score of these mRNAs.

Extended Data Fig. 7 Gene expression analysis.

A-F) Select genes in the NLRP3 inflammasome pathway and G-L) select genes in the RAF:RAS pathway in the hippocampus or cortex of male mice. Control (Ctrl)=4; Chronic Subordination Stress (CSS) = 5. Unpaired, two-sided t test (A: p = 0.0169; B: p < 0.0001). Bars represent group mean and error bars represent standard error of the mean (SEM). * p < 0.05, ****p < 0.0001.

Extended Data Fig. 8 Behavioral and physiological characterization of mice exposed to Chronic Subordination Stress (CSS) or Chronic Restraint Stress (CRS).

A) Diagram of the experimental protocol. B) CSS increases body weight gain irrespective of GCV treatment. Ctrl+veh vs CSS+veh p = 0.0091. ctrl+veh vs CSS + GCV p = 0.0412. ctrl+GCV vs CSS+veh p = 0.0007. ctrl+GCV vs CSS + GCV p = 0.0030. 2-way ANOVA, Tukey post hoc. Ctrl+veh N = 15, Ctrl+GCV N = 7, CSS+veh N = 28, CSS + GCV N = 14. C) CSS increases body weight gain irrespective of GCV treatment. Ctrl+veh vs CSS+veh p = 0.0010. Ctrl+veh vs CSS + GCV p = 0.0178. ctrl+GCV vs CSS+veh p = 0.0036. ctrl+GCV vs CSS + GCV p = 0.0229. 2-way ANOVA, Tukey post hoc. Ctrl+veh N = 15, Ctrl+GCV N = 7, CSS+veh N = 28, CSS + GCV N = 14.D) CSS affects expression of select Hypothalamus Pituitary Adrenocortical (HPA)-axis related genes in the hypothalamus, cortex or hippocampus irrespective of GCV treatment. 1-way ANOVA. CRH= Corticotropin-releasing hormone, GR=glucocorticoids receptor. Ctrl+veh=3-4, CSS+veh=4-5, CSS + GCV = 6. E-F) CRS decreases body weight in male mice irrespective of GCV treatment. Ctrl+veh vs CSS+veh p < 0.0001. ctrl+veh vs CSS + GCV p < 0.0001 ctrl+GCV vs CSS+veh p < 0.0001. ctrl+GCV vs CSS + GCV p < 0.0001. 2-way ANOVA. Tukey post hoc. Ctrl+veh=15, Ctrl+GCV = 7, CRS+veh=15, CRS + GCV = 9. G-H) CRS exerts no effect in female mice. Ganciclovir (GCV) decreases body weight gain in control but not CRS treated mice. Ctrl+veh vs ctrl+GCV p = 0.0246. 2-way ANOVA. Tukey post hoc. Ctrl+veh=5, Ctrl+GCV = 5, CRS+veh=6, CRS + GCV = 5. * indicates p < 0.05, ** indicates p < 0.01; *** indicates p < 0.001; **** indicates p < 0.0001. Shaded bars indicate GCV treatment groups. Histograms represent group mean and error bars represents standard error of the mean (SEM).

Extended Data Fig. 9 Behavioral and physiological characterization of mice exposed to lifelong Chronic Subordination Stress (CSS) up to 16 months of age.

A) Diagram of the experimental protocol. B) while treatment group didn’t affect body weight (age: F(1.66, 94.73) = 391.1, p < 0.0001; group: F(3,63) = 0.24, p = 0.86; age x group: F(12, 228) = 1.12, p = 0.35), CSS causes hyperphagia. C) (age: F(2.74, 150.7) = 11.1, p < 0.0001; group: F(3,63) = 10.72, p < 0.0001; age x group: F(12, 220) = 2.51, p = 0.0042) and increases clinical frailty index (CFI). D) (age: F(2, 110) = 149.6, p < 0.0001; group: F(3,63) = 2.39, p = 0.076; age x group: F(6, 110) = 2.05, p = 0.06) – including loss of fur color). E) (age: F(1.71, 94.03) = 46.76, p < 0.0001; group: F(3,63) = 6.14, p = 0.001; age x group: F(6, 110) = 4.17, p = 0.0008) irrespective of Ganciclovir (GCV) treatment. Ctrl+veh=14, Ctrl+GCV = 15, CSS+veh=14-19 (range due to animal death during the experiment), CSS + GCV = 9-19 (range due to animal death during the experiment). * indicates p < 0.05, ** indicates p < 0.01; *** indicates p < 0.001; **** indicates p < 0.0001. 2-way ANOVA, Tukey post hoc. Data are represented as group means and error bars represent standard error of the mean (SEM).

Extended Data Fig. 10 RNAscope representative images validating mRFP expression, and colocalization with p16 and p21.

Representative RNAscope Fluorescent In Situ Hybridization images showing probes for mRFP, p21, and p16 expression in Hippocampus-CA3 (A) and somatosensory cortex (B) in vehicle (Veh) treated control animals (Ctrl), veh treated chronic Subordination Stress (CSS) animals, and Ganciclovir (GCV) treated CSS animals. The results here were consistent across two repeated experiments, with the second pass having a more substantial n per group. The mRFP signal that is observed is not due to autofluorescence (any autofluorescent signal gets quenched due to the protease reagents in FISH protocol), but rather RNAscope mRFP probes detecting mRFP transcripts and that signal then being amplified. The inserts in the p16 panels show the merge of the 3 signals on one representative nucleus. Scale bars represent 30 µm.

Supplementary information

Supplementary Information

Supplementary Tables 1–6 and Note.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyons, C.E., Pallais, J.P., McGonigle, S. et al. Chronic social stress induces p16-mediated senescent cell accumulation in mice. Nat Aging 5, 48–64 (2025). https://doi.org/10.1038/s43587-024-00743-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43587-024-00743-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing