Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A data-driven approach for the guided regulation of exposed facets in nanoparticles

Abstract

Nanomaterials with high-index facets have desirable properties but are often challenging to synthesize. One way to realize such structures is by incorporating guest metal or metalloid atoms that can stabilize high-index facets by influencing surface energies. However, the effect of different guest atoms can vary substantially, and the vast parameter set (possible combinations of host nanoparticles and guest species) makes a trial-and-error experimental approach to explore every combination impractical. Here we report a data-driven approach incorporating high-throughput density functional theory calculations to assess surface energies of low- and high-index facets of nanoparticles (9 transition metals) with surfaces modified by 13 guest atoms. Machine-learning techniques are then used to understand the critical features leading to energetically favoured high-index facet formation in the context of tetrahexahedron. The predictions are validated by chemical synthesis, demonstrating the efficacy of this approach in accelerating the synthesis of tetrahexahedron materials with exposed {210} facets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: HT-DFT calculated surface energies of 117 host–guest systems.
Fig. 2: Machine-learning models for feature importance analysis and THH shape preference prediction.
Fig. 3: SEM images of chemically synthesized THH-shaped nanoparticles guided by HT-DFT.
Fig. 4: THH-shaped copper nanoparticles synthesized by surface antimony modification.
Fig. 5: SEM images and EDS maps of THH-shaped multimetallic nanoparticles.

Similar content being viewed by others

Data availability

The data supporting the findings of the study are available in the paper and its Supplementary Information. Source data are provided with this paper. All DFT calculation data are published in the OQMD (https://oqmd.org).

Code availability

The code used in this work is deposited in Github (https://github.com/dohunkang/HTDFT_THH).

References

  1. Xiao, C. et al. High-index-facet- and high-surface-energy nanocrystals of metals and metal oxides as highly efficient catalysts. Joule 4, 2562–2598 (2020).

    Article  CAS  Google Scholar 

  2. Tian, N. et al. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316, 732–735 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Choi, C. et al. Highly active and stable stepped Cu surface for enhanced electrochemical CO2 reduction to C2H4. Nat. Catal. 3, 804–812 (2020).

    Article  CAS  Google Scholar 

  4. Hong, J. W. et al. Hexoctahedral Au nanocrystals with high-index facets and their optical and surface-enhanced Raman scattering properties. J. Am. Chem. Soc. 134, 4565–4568 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Popczun, E. J. et al. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 135, 9267–9270 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Butterfield, A. G. et al. Morphology-dependent phase selectivity of cobalt sulfide during nanoparticle cation exchange reactions. J. Am. Chem. Soc. 143, 7915–7919 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Halford, G. C. & Personick, M. L. Bridging colloidal and electrochemical nanoparticle growth with in situ electrochemical measurements. Acc. Chem. Res. 56, 1228–1238 (2023).

    Article  CAS  PubMed  Google Scholar 

  8. Shi, Y. et al. Noble-metal nanocrystals with controlled shapes for catalytic and electrocatalytic applications. Chem. Rev. 121, 649–735 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Ghosh, S. & Manna, L. The many “facets” of halide ions in the chemistry of colloidal inorganic nanocrystals. Chem. Rev. 118, 7804–7864 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Personick, M. L. & Mirkin, C. A. Making sense of the mayhem behind shape control in the synthesis of gold nanoparticles. J. Am. Chem. Soc. 135, 18238–18247 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Shen, B. et al. Morphology engineering in multicomponent hollow metal chalcogenide nanoparticles. ACS Nano 17, 4642–4649 (2023).

    Article  CAS  PubMed  Google Scholar 

  12. Huang, L. et al. Regioselective deposition of metals on seeds within a polymer matrix. J. Am. Chem. Soc. 144, 4792–4798 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. McDarby, S. P. et al. An integrated electrochemistry approach to the design and synthesis of polyhedral noble metal nanoparticles. J. Am. Chem. Soc. 142, 21322–21335 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Xiao, J. et al. Synthesis of convex hexoctahedral Pt micro/nanocrystals with high-index facets and electrochemistry-mediated shape evolution. J. Am. Chem. Soc. 135, 18754–18757 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Xia, Y., Xia, X. & Peng, H. C. Shape-controlled synthesis of colloidal metal nanocrystals: thermodynamic versus kinetic products. J. Am. Chem. Soc. 137, 7947–7966 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Barmparis, G. D. et al. Nanoparticle shapes by using Wulff constructions and first-principles calculations. Beilstein J. Nanotechnol. 6, 361–368 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Barnard, A. S., Lin, X. M. & Curtiss, L. A. Equilibrium morphology of face-centered cubic gold nanoparticles >3 nm and the shape changes induced by temperature. J. Phys. Chem. B 109, 24465–24472 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Huang, L. et al. Shape regulation of high-index facet nanoparticles by dealloying. Science 365, 1159–1163 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Ji, L. et al. Shape reconstruction from commercial Pt/C to high-index Pt/C for advanced electrocatalysts. ACS Catal. 13, 13846–13855 (2023).

    Article  CAS  Google Scholar 

  20. Huang, L. et al. High-index-facet metal-alloy nanoparticles as fuel cell electrocatalysts. Adv. Mater. 32, e2002849 (2020).

    Article  PubMed  Google Scholar 

  21. Huang, L. et al. Multimetallic high-index faceted heterostructured nanoparticles. J. Am. Chem. Soc. 142, 4570–4575 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Shen, B. et al. Crystal structure engineering in multimetallic high-index facet nanocatalysts. Proc. Natl Acad. Sci. USA 118, e2105722118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Emery, A. A. et al. High-throughput computational screening of perovskites for thermochemical water splitting applications. Chem. Mater. 28, 5621–5634 (2016).

    Article  CAS  Google Scholar 

  24. Aykol, M. et al. High-throughput computational design of cathode coatings for Li-ion batteries. Nat. Commun. 7, 13779 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nandy, A. et al. Computational discovery of transition-metal complexes: from high-throughput screening to machine learning. Chem. Rev. 121, 9927–10000 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Yin, K. et al. An automated predictor for identifying transition states in solids. NPJ Comput. Mater. 6, 16 (2020).

    Article  Google Scholar 

  27. Westermayr, J. et al. High-throughput property-driven generative design of functional organic molecules. Nat. Comput. Sci. 3, 139–148 (2023).

    Article  CAS  PubMed  Google Scholar 

  28. Jun, K. et al. Lithium superionic conductors with corner-sharing frameworks. Nat. Mater. 21, 924–931 (2022).

    Article  CAS  PubMed  Google Scholar 

  29. Xu, Y. et al. High-throughput calculations of magnetic topological materials. Nature 586, 702–707 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Hautier, G. Finding the needle in the haystack: materials discovery and design through computational ab initio high-throughput screening. Comput. Mater. Sci. 163, 108–116 (2019).

    Article  CAS  Google Scholar 

  31. Curtarolo, S. et al. The high-throughput highway to computational materials design. Nat. Mater. 12, 191–201 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Zhu, Q. et al. Automated synthesis of oxygen-producing catalysts from Martian meteorites by a robotic AI chemist. Nat. Synth. 3, 319–328 (2023).

    Article  Google Scholar 

  33. Garnero, C. et al. Single-crystalline body centered FeCo nano-octopods: from one-pot chemical growth to a complex 3D magnetic configuration. Nano Lett. 21, 3664–3670 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Boukouvala, C., Daniel, J. & Ringe, E. Approaches to modelling the shape of nanocrystals. Nano Converg. 8, 26 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang, S. et al. Monodisperse AgPd alloy nanoparticles and their superior catalysis for the dehydrogenation of formic acid. Angew. Chem. Int. Ed. 52, 3681–3684 (2013).

    Article  CAS  Google Scholar 

  36. Yin, Z. et al. Hybrid catalyst coupling single-atom Ni and nanoscale Cu for efficient CO2 electroreduction to ethylene. J. Am. Chem. Soc. 144, 20931–20938 (2022).

    Article  CAS  PubMed  Google Scholar 

  37. Yang, Y. et al. Operando studies reveal active Cu nanograins for CO2 electroreduction. Nature 614, 262–269 (2023).

    Article  CAS  PubMed  Google Scholar 

  38. Kim, D. et al. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold–copper bimetallic nanoparticles. Nat. Commun. 5, 4948 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Hitt, J. L. et al. A high throughput optical method for studying compositional effects in electrocatalysts for CO2 reduction. Nat. Commun. 12, 1114 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hitt, J. L. et al. High-throughput fluorescent screening and machine learning for feature selection of electrocatalysts for the alkaline hydrogen oxidation reaction. ACS Sustain. Chem. Eng. 10, 16299–16312 (2022).

    Article  Google Scholar 

  41. Smith, P. T. et al. Molecular thin films enable the synthesis and screening of nanoparticle megalibraries containing millions of catalysts. J. Am. Chem. Soc. 145, 14031–14043 (2023).

    Article  CAS  PubMed  Google Scholar 

  42. Ha, M. et al. Multicomponent plasmonic nanoparticles: from heterostructured nanoparticles to colloidal composite nanostructures. Chem. Rev. 119, 12208–12278 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Lee, S. et al. Heterogeneous component Au (outer)–Pt (middle)–Au (inner) nanorings: synthesis and vibrational characterization on middle Pt nanorings with surface-enhanced raman scattering. ACS Nano 16, 11259–11267 (2022).

    Article  CAS  PubMed  Google Scholar 

  44. Koo, K. et al. Formation mechanism of high-index faceted Pt–Bi alloy nanoparticles by evaporation-induced growth from metal salts. Nat. Commun. 14, 3790 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ward, L. et al. A general-purpose machine learning framework for predicting properties of inorganic materials. NPJ Comput. Mater. 2, 16028 (2016).

    Article  Google Scholar 

  46. Xia, Y. et al. A unified understanding of minimum lattice thermal conductivity. Proc. Natl Acad. Sci. USA 120, e2302541120 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lundberg, S. M. et al. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2, 56–67 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Loevlie, D. J., Ferreira, B. & Mpourmpakis, G. Demystifying the chemical ordering of multimetallic nanoparticles. Acc. Chem. Res. 56, 248–257 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yao, Y. et al. High-entropy nanoparticles: synthesis–structure–property relationships and data-driven discovery. Science 376, eabn3103 (2022).

    Article  CAS  PubMed  Google Scholar 

  50. Denton, A. R. & Ashcroft, N. W. Vegard’s law. Phys. Rev. A 43, 3161–3164 (1991).

    Article  CAS  PubMed  Google Scholar 

  51. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. B 136, 864–871 (1964).

    Article  Google Scholar 

  52. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. A 140, 1133–1138 (1965).

    Article  Google Scholar 

  53. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  54. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  55. Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  CAS  Google Scholar 

  56. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  57. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  58. Saal, J. E. et al. Materials design and discovery with high-throughput density functional theory: the Open Quantum Materials Database (OQMD). JOM 65, 1501–1509 (2013).

    Article  CAS  Google Scholar 

  59. Kirklin, S. et al. The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies. NPJ Comput. Mater. 1, 15010 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Sengupta (Northwestern University) for professional editorial advice. Research was sponsored by the Army Research Office under grants W911NF-23-1-0141 and W911NF-23-1-0285, the Toyota Research Institute, Inc., and the Sherman Fairchild Foundation, Inc. D.K. acknowledges funding from the International Institute for Nanotechnology. Z.Y. and D.K. acknowledge partial support from the Predictive Science and Engineering Design (PSED) programme at Northwestern University. J.S. acknowledges support from the MRSEC programme (DMR-1720139) at the Materials Research Center of Northwestern University. This work made use of the EPIC and BioCryo facilities of Northwestern University’s NUANCE Center, which has received support from the SHyNE Resource (NSF ECCS-2025633), the International Institute for Nanotechnology and Northwestern’s MRSEC programme (NSF DMR-1720139). We acknowledge the computational resources provided by the Quest high-performance computing facility at Northwestern University.

Author information

Authors and Affiliations

Authors

Contributions

C.A.M. and C.M.W. supervised the research. Z.Y. and B.S. performed materials synthesis, characterization and analysis. D.K. performed HF-DFT calculation and machine learning. J.S., J.H., Z.W. and L.H. participated in discussions and provided suggestions. All authors contributed to the writing.

Corresponding authors

Correspondence to Christopher M. Wolverton or Chad A. Mirkin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Rao Huang, Tung-Han Yang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alison Stoddart, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–26, Notes 1 and 2, Tables 1–4 and references 1–13.

Source data

Source Data Fig. 1

Source data for Fig. 1a,b.

Source Data Fig. 2

Source data for Fig. 2c.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Z., Shen, B., Kang, D. et al. A data-driven approach for the guided regulation of exposed facets in nanoparticles. Nat. Synth 3, 922–929 (2024). https://doi.org/10.1038/s44160-024-00561-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-024-00561-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing