Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synthesis of ultrahigh-metal-density single-atom catalysts via metal sulfide-mediated atomic trapping

Abstract

Single-atom catalysts (SACs) exhibit exceptional intrinsic activity per metal site, but are often limited by low metal loading, which compromises the overall catalytic performance. Pyrolytic strategies commonly used for synthesizing SACs generally suffer from aggregation at high metal loadings. Here we report a universal synthesis approach for ultrahigh-density metal–nitrogen–carbon (UHDM–N–C) SACs via a metal-sulfide-mediated atomization process. We show that our approach is general for transition, rare-earth and noble metals, achieving 17 SACs with metal loadings >20 wt% (including a loading of 26.9 wt% for Cu, 31.2 wt% for Dy and 33.4 wt% for Pt) at 800 °C, as well as high-entropy quinary and vicenary SACs with ultrahigh metal contents. In situ X-ray diffraction and transmission electron microscopy alongside molecular simulations reveals a dynamic nanoparticle-to-single atom transformation process, including thermally driven decomposition of the metal sulfide and the trapping of liberated metal atoms to form thermodynamically stable M–N–C moieties. Our studies indicate that a high N-doping is crucial for achieving ultrahigh-loading metal atoms and a metal-sulfide-mediated process is essential for avoiding metal aggregation at high loadings. As a demonstration, the metal-loading-dependent activity in electrocatalytic oxygen evolution reaction is demonstrated on SACs with increasing Ni content.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustration of the design and controllable preparation of SACs featuring ultrahigh loadings of isolated metal atoms.
Fig. 2: Structural characterizations of UHDNi–N–C SACs.
Fig. 3: Universality for other metal elements with ultrahigh loadings.
Fig. 4: Visualization of the prepared high-entropy UHD SACs.
Fig. 5: Unveiling the atomization mechanism.
Fig. 6: OER performance.

Similar content being viewed by others

Data availability

All data are available in the main text or the Supplementary Information. Source data are provided with this paper.

References

  1. Qiao, B. et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634–641 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Wang, A., Li, J. & Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2, 65–81 (2018).

    Article  CAS  Google Scholar 

  3. Muravev, V. et al. Size of cerium dioxide support nanocrystals dictates reactivity of highly dispersed palladium catalysts. Science 380, 1174–1179 (2023).

    Article  CAS  PubMed  Google Scholar 

  4. Chang, X. et al. Designing single-site alloy catalysts using a degree-of-isolation descriptor. Nat. Nanotechnol. 18, 611–616 (2023).

    Article  CAS  PubMed  Google Scholar 

  5. Ro, I. et al. Bifunctional hydroformylation on heterogeneous Rh–WOx pair site catalysts. Nature 609, 287–292 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Lee, B.-H. et al. Supramolecular tuning of supported metal phthalocyanine catalysts for hydrogen peroxide electrosynthesis. Nat. Catal. 6, 234–243 (2023).

    Article  CAS  Google Scholar 

  7. Xia, C. et al. General synthesis of single-atom catalysts with high metal loading using graphene quantum dots. Nat. Chem. 13, 887–894 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Mehmood, A. et al. High loading of single atomic iron sites in Fe–NC oxygen reduction catalysts for proton exchange membrane fuel cells. Nat. Catal. 5, 311–323 (2022).

    Article  CAS  Google Scholar 

  9. Zhao, C.-X. et al. A clicking confinement strategy to fabricate transition metal single-atom sites for bifunctional oxygen electrocatalysis. Sci. Adv. 8, eabn5091 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Iqbal, S., Safdar, B., Hussain, I., Zhang, K. & Chatzichristodoulou, C. Trends and prospects of bulk and single-atom catalysts for the oxygen evolution reaction. Adv. Energy Mater. 13, 2203913 (2023).

    Article  CAS  Google Scholar 

  11. Tang, C. et al. Tailoring acidic oxygen reduction selectivity on single-atom catalysts via modification of first and second coordination spheres. J. Am. Chem. Soc. 143, 7819–7827 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Hai, X. et al. Scalable two-step annealing method for preparing ultra-high-density single-atom catalyst libraries. Nat. Nanotechnol. 17, 174–181 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Liu, S. et al. Atomically dispersed iron sites with a nitrogen–carbon coating as highly active and durable oxygen reduction catalysts for fuel cells. Nat. Energy 7, 652–663 (2022).

    Article  CAS  Google Scholar 

  14. Kuai, L. et al. High-areal density single-atoms/metal oxide nanosheets: a micro-gas blasting synthesis and superior catalytic properties. Angew. Chem. Int. Ed. 61, e202212338 (2022).

    Article  CAS  Google Scholar 

  15. Zhao, L. et al. Cascade anchoring strategy for general mass production of high-loading single-atomic metal–nitrogen catalysts. Nat. Commun. 10, 1278 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Liu, C. et al. Constructing FeN4/graphitic nitrogen atomic interface for high-efficiency electrochemical CO2 reduction over a broad potential window. Chem 7, 1297–1307 (2021).

    Article  CAS  Google Scholar 

  17. Zhao, J. et al. Manipulating the oxygen reduction reaction pathway on Pt-coordinated motifs. Nat. Commun. 13, 685 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Han, L. et al. A single-atom library for guided monometallic and concentration-complex multimetallic designs. Nat. Mater. 21, 681–688 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Liu, J. et al. Direct observation of metal oxide nanoparticles being transformed into metal single atoms with oxygen-coordinated structure and high-loadings. Angew. Chem. Int. Ed. 60, 15248–15253 (2021).

    Article  CAS  Google Scholar 

  20. Chang, J. et al. Oxygen radical coupling on short-range ordered Ru atom arrays enables exceptional activity and stability for acidic water oxidation. J. Am. Chem. Soc. 146, 12958–12968 (2024).

    Article  CAS  PubMed  Google Scholar 

  21. Lei, X. et al. High-entropy single-atom activated carbon catalysts for sustainable oxygen electrocatalysis. Nat. Sustain. 6, 816–826 (2023).

    Article  Google Scholar 

  22. Wu, Z.-Y. et al. Non-iridium-based electrocatalyst for durable acidic oxygen evolution reaction in proton exchange membrane water electrolysis. Nat. Mater. 22, 100–108 (2023).

    Article  CAS  PubMed  Google Scholar 

  23. Jones, J. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 353, 150–154 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Nie, L. et al. Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 358, 1419–1423 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Qu, Y. et al. Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nat. Catal. 1, 781–786 (2018).

    Article  CAS  Google Scholar 

  26. Han, G.-F. et al. Abrading bulk metal into single atoms. Nat. Nanotechnol. 17, 403–407 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Wei, S. et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol. 13, 856–861 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Li, J. et al. Thermally driven structure and performance evolution of atomically dispersed FeN4 sites for oxygen reduction. Angew. Chem. Int. Ed. 58, 18971–18980 (2019).

    Article  CAS  Google Scholar 

  29. Zhao, C. et al. Solid-diffusion synthesis of single-atom catalysts directly from bulk metal for efficient CO2 reduction. Joule 3, 584–594 (2019).

    Article  CAS  Google Scholar 

  30. Yang, Z. et al. Directly transforming copper (I) oxide bulk into isolated single-atom copper sites catalyst through gas-transport approach. Nat. Commun. 10, 3734 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yang, J. et al. In situ thermal atomization to convert supported nickel nanoparticles into surface-bound nickel single-atom catalysts. Angew. Chem. Int. Ed. 57, 14095–14100 (2018).

    Article  CAS  Google Scholar 

  32. Kumar, P. et al. High-density cobalt single-atom catalysts for enhanced oxygen evolution reaction. J. Am. Chem. Soc. 145, 8052–8063 (2023).

    Article  CAS  PubMed  Google Scholar 

  33. Fei, H. et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 1, 63–72 (2018).

    Article  CAS  Google Scholar 

  34. Liu, Y. et al. Elemental superdoping of graphene and carbon nanotubes. Nat. Commun. 7, 10921 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chang, J. et al. A C-S-C linkage-triggered ultrahigh nitrogen-doped carbon and the identification of active site in triiodide reduction. Angew. Chem. Int. Ed. 60, 3587–3595 (2021).

    Article  CAS  Google Scholar 

  36. Dai, L. Graphene: tunable superdoping. Nat. Energy 1, 16041 (2016).

    Article  CAS  Google Scholar 

  37. He, X. et al. Building up libraries and production line for single atom catalysts with precursor-atomization strategy. Nat. Commun. 13, 5721 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xie, F. et al. A general approach to 3D-printed single-atom catalysts. Nat. Synth. 2, 129–139 (2023).

    Article  Google Scholar 

  39. Wang, B. et al. Room-temperature laser planting of high-loading single-atom catalysts for high-efficiency electrocatalytic hydrogen evolution. J. Am. Chem. Soc. 145, 13788–13795 (2023).

    Article  CAS  PubMed  Google Scholar 

  40. Zheng, Y., Lin, L., Wang, B. & Wang, X. Graphitic carbon nitride polymers toward sustainable photoredox catalysis. Angew. Chem. Int. Ed. 54, 12868–12884 (2015).

    Article  CAS  Google Scholar 

  41. Li, W. et al. Exploiting Ru-induced lattice strain in CoRu nanoalloys for robust bifunctional hydrogen production. Angew. Chem. Int. Ed. 60, 3290–3298 (2021).

    Article  CAS  Google Scholar 

  42. Song, H. et al. Single atom ruthenium-doped CoP/CDs nanosheets via splicing of carbon-dots for robust hydrogen production. Angew. Chem. Int. Ed. 60, 7234–7244 (2021).

    Article  CAS  Google Scholar 

  43. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964).

    Article  Google Scholar 

  44. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  45. Zhang, Y. & Yang, W. Comment on ‘Generalized gradient approximation made simple’. Phys. Rev. Lett. 80, 890–890 (1998).

    Article  CAS  Google Scholar 

  46. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  47. Qu, Y. et al. Thermal emitting strategy to synthesize atomically dispersed Pt metal sites from bulk Pt metal. J. Am. Chem.Soc. 141, 4505–4509 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Yang, H. B. et al. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat. Ener. 3, 140–147 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the National Natural Science Foundation of China (NSFC, nos. 52122308 52202050, 21905253 and 51973200), the China Postdoctoral Science Foundation (2022TQ0286), the Natural Science Foundation of Henan (202300410372) and the Joint Fund of Science and Technology R&D Plan of Henan Province (232301420042). We also acknowledge the Beijing Synchrotron Radiation Facility and the Center for Modern Analysis and Gene Sequencing of Zhengzhou University for supporting this research. G.I.N.W. acknowledges funding support from the Ministry of Business Innovation and Employment (C05X2007 and UOCX2118) and the Royal Society Te Apārangi (James Cook Research Fellowship). X.Y. acknowledges the Leverhulme Trust for Early Career Fellowship for support.

Author information

Authors and Affiliations

Authors

Contributions

S.L., X.D., B.Y., Z.T. and J.C. designed and coordinated the project and also supervised all aspects of the research. W.J. conducted the materials synthesis, structural characterizations of the prepared catalysts and electrochemical measurements, interpreted the data and drafted the paper. X.Y., A.C. and J.Y. carried out the corresponding DFT calculations. S.W. assisted with the in situ experimental investigations. Data collection and analyses were performed by W.J., H.W., C.W. and S.W. G.I.N.W. participated in discussions about the experimental results and providing valuable suggestions for the research. All authors contributed to the preparation and editing of the paper.

Corresponding authors

Correspondence to Xiangfeng Duan or Siyu Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Christodoulos Chatzichristodoulou, Yuen Wu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alexandra Groves, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–81, Discussion, Notes 1–7 and Tables 1–5.

Supplementary Video 1

A movie shows the dynamic decomposition process of the Ni3S3 nanoparticle.

Supplementary Video 2

A movie shows the dynamic decomposition process of the Ni8S8 nanoparticle.

Supplementary Video 3

A movie shows the dynamic atomization evolution by theoretical simulation, where the emitted Ni atom is trapped by the N-dopants to form a thermodynamically stable Ni−N4−C site.

Source data

Source Data Fig. 2

Statistical source data for Fig. 2

Source Data Fig. 3

Statistical source data for Fig. 3

Source Data Fig. 5

Statistical source data for Fig. 5

Source Data Fig. 6

Statistical source data for Fig. 6

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, J., Jing, W., Yong, X. et al. Synthesis of ultrahigh-metal-density single-atom catalysts via metal sulfide-mediated atomic trapping. Nat. Synth 3, 1427–1438 (2024). https://doi.org/10.1038/s44160-024-00607-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-024-00607-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing