Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Low-symmetry coordination cages enable recognition specificity and selective enrichment of higher fullerene isomers

Abstract

The discovery of buckminsterfullerene (C60) marked a milestone in exploring three-dimensional carbon materials. However, with the exponential increase in the number of isomers for higher fullerenes, it has become challenging to realize the enrichment of the isomers by molecular recognition. Here we report two pseudo-cubic metal–organic cages, T and S4, with distinct cavity microenvironments, that showcase recognition specificity towards higher fullerene isomers. Compared with cage T, a symmetry shift from S4 to C2 emerges upon encapsulating an ellipsoidal D2-C76 guest, owing to the precise shape matching that curtails guest rotation. Furthermore, the low-symmetry cage S4 shows exceptional sensitivity in distinguishing between closely related isomers, such as a pair of C2v-symmetric C78 isomers, and shows promise for the selective enrichment of higher fullerenes. The approach of reducing symmetry positions metal–organic cages as promising candidates for encapsulating and identifying a broader spectrum of fullerene isomers, paralleling the specificity observed in biological systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Host–guest recognition of various fullerene isomers by supramolecular hosts.
Fig. 2: Synthesis and characterization of high-symmetry assemblies.
Fig. 3: Synthesis and characterization of low-symmetry assemblies.
Fig. 4: Solid-state structures of assemblies.
Fig. 5: Comparison of recognition sensitivity of T- and S4-symmetric cages.
Fig. 6: Recognition of C2v-symmetric C78 isomers with T- and S4-symmetric cages.

Similar content being viewed by others

Data availability

Crystallographic data are available free of charge from the Cambridge Crystallographic Data Centre under reference CCDC no. 2278920 (C2v-C78), 2278921 (C2v′-C78), 2307962 (C3-1), 2307963 (P-1), 2307964(4), 2307965 (T-3), 2307966 (C60S4-4) and 2307967 (C70S4-4). These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via https://www.ccdc.cam.ac.uk/structures/. All other data supporting the findings of this study are available in the Article or the Supplementary Information.

References

  1. Ringe, D. & Petsko, G. A. How enzymes work. Science 320, 1428–1429 (2008).

    PubMed  CAS  Google Scholar 

  2. Lehn, J.-M. Supramolecular chemistry: receptors, catalysts, and carriers. Science 227, 849–856 (1985).

    PubMed  CAS  Google Scholar 

  3. Fujita, D. et al. Self-assembly of tetravalent Goldberg polyhedra from 144 small components. Nature 540, 563–566 (2016).

    PubMed  CAS  Google Scholar 

  4. Cullen, W., Misuraca, M. C., Hunter, C. A., Williams, N. H. & Ward, M. D. Highly efficient catalysis of the Kemp elimination in the cavity of a cubic coordination cage. Nat. Chem. 8, 231–236 (2016).

    PubMed  CAS  Google Scholar 

  5. Ke, X. S., Kim, T., Lynch, V. M., Kim, D. & Sessler, J. L. Flattened calixarene-like cyclic BODIPY array: a new photosynthetic antenna model. J. Am. Chem. Soc. 139, 13950–13956 (2017).

    PubMed  CAS  Google Scholar 

  6. Wu, T. et al. Supramolecular triangular orthobicupola: self-assembly of a giant Johnson solid J27. Chem 7, 2429–2441 (2021).

    CAS  Google Scholar 

  7. Lu, Y.-L. et al. A robust protein-mimicking metallo-amine cage showing proton-driven allostery with water as the effector. Chem 9, 2144–2160 (2023).

    CAS  Google Scholar 

  8. Wu, K. et al. Systematic construction of progressively larger capsules from a fivefold linking pyrrole-based subcomponent. Nat. Synth. 2, 789–797 (2023).

    CAS  Google Scholar 

  9. Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F. & Smalley, R. E. C60: buckminsterfullerene. Nature 318, 162–163 (1985).

    CAS  Google Scholar 

  10. Effing, J. et al. C60 and C70 in a basket?—Investigations of mono- and multilayers from azacrown compounds and fullerenes. Angew. Chem. Int. Ed. 31, 1599–1602 (1992).

    Google Scholar 

  11. Boyd, P. D. W. & Reed, C. A. Fullerene–porphyrin constructs. Acc. Chem. Res. 38, 235–242 (2005).

    PubMed  CAS  Google Scholar 

  12. Kawase, T. & Kurata, H. Ball-, bowl-, and belt-shaped conjugated systems and their complexing abilities: exploration of the concave–convex π–π interaction. Chem. Rev. 106, 5250–5273 (2006).

    PubMed  CAS  Google Scholar 

  13. Tashiro, K. & Aida, T. Metalloporphyrin hosts for supramolecular chemistry of fullerenes. Chem. Soc. Rev. 36, 189–197 (2007).

    PubMed  CAS  Google Scholar 

  14. Canevet, D., Pérez, E. M. & Martín, N. Wraparound hosts for fullerenes: tailored macrocycles and cages. Angew. Chem. Int. Ed. 50, 9248–9259 (2011).

    CAS  Google Scholar 

  15. Shi, Y. et al. Selective extraction of C70 by a tetragonal prismatic porphyrin cage. J. Am. Chem. Soc. 140, 13835–13842 (2018).

    PubMed  CAS  Google Scholar 

  16. Xu, Y.-Y. et al. Flexible decapyrrylcorannulene hosts. Nat. Commun. 10, 485 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Matsumoto, K. et al. A peanut-shaped polyaromatic capsule: solvent-dependent transformation and electronic properties of a non-contacted fullerene dimer. Angew. Chem. Int. Ed. 58, 8463–8467 (2019).

    CAS  Google Scholar 

  18. Chang, X. et al. Self-assembled perylene bisimide-cored trigonal prism as an electron-deficient host for C60 and C70 driven by ‘like dissolves like’. J. Am. Chem. Soc. 142, 15950–15960 (2020).

    PubMed  CAS  Google Scholar 

  19. Bera, S., Das, S., Melle-Franco, M. & Mateo-Alonso, A. An organic molecular nanobarrel that hosts and solubilizes C60. Angew. Chem. Int. Ed. 62, e202216540 (2023).

    CAS  Google Scholar 

  20. Atwood, J. L., Koutsantonis, G. A. & Raston, C. L. Purification of C60 and C70 by selective complexation with calixarenes. Nature 368, 229–231 (1994).

    CAS  Google Scholar 

  21. Suzuki, T., Nakashima, K. & Shinkai, S. Very convenient and efficient purification method for fullerene (C60) with 5,11,17,23,29,35,41,47-octa-tert-bultylcalix[8]arene-49,50,51,52,53,54,55,56-octol. Chem. Lett. 23, 699–702 (1994).

    Google Scholar 

  22. Huang, H. et al. Third-order nonlinear optical response of fullerenes as a function of the carbon cage size (C60 to C96) at 0.532 μm. J. Phys. Chem. B 102, 61–66 (1998).

    CAS  Google Scholar 

  23. Umeyama, T. & Imahori, H. Isomer effects of fullerene derivatives on organic photovoltaics and perovskite solar cells. Acc. Chem. Res. 52, 2046–2055 (2019).

    PubMed  CAS  Google Scholar 

  24. Li, T. et al. A new interleukin-13 amino-coated gadolinium metallofullerene nanoparticle for targeted MRI detection of glioblastoma tumor cells. J. Am. Chem. Soc. 137, 7881–7888 (2015).

    PubMed  CAS  Google Scholar 

  25. Puente Santiago, A. R. et al. A new class of molecular electrocatalysts for hydrogen evolution: catalytic activity of M3N@C2n (2n = 68, 78, and 80) fullerenes. J. Am. Chem. Soc. 143, 6037–6042 (2021).

    PubMed  CAS  Google Scholar 

  26. Ettl, R., Chao, I., Diederich, F. & Whetten, R. L. Isolation of C76, a chiral (D2) allotrope of carbon. Nature 353, 149–153 (1991).

    CAS  Google Scholar 

  27. Hawkins, J. M. & Meyer, A. Optically active carbon: kinetic resolution of C76 by asymmetric osmylation. Science 260, 1918–1920 (1993).

    PubMed  CAS  Google Scholar 

  28. Shoji, Y., Tashiro, K. & Aida, T. One-pot enantioselective extraction of chiral fullerene C76 using a cyclic host carrying an asymmetrically distorted, highly π-basic porphyrin module. J. Am. Chem. Soc. 132, 5928–5929 (2010).

    PubMed  CAS  Google Scholar 

  29. Inokuma, Y., Arai, T. & Fujita, M. Networked molecular cages as crystalline sponges for fullerenes and other guests. Nat. Chem. 2, 780–783 (2010).

    PubMed  CAS  Google Scholar 

  30. García-Simón, C., Costas, M. & Ribas, X. Metallosupramolecular receptors for fullerene binding and release. Chem. Soc. Rev. 45, 40–62 (2016).

    PubMed  Google Scholar 

  31. Kishi, N. et al. Facile catch and release of fullerenes using a photoresponsive molecular tube. J. Am. Chem. Soc. 135, 12976–12979 (2013).

    PubMed  CAS  Google Scholar 

  32. Sanchez-Molina, I. et al. Self-assembly, host–guest chemistry, and photophysical properties of subphthalocyanine-based metallosupramolecular capsules. J. Am. Chem. Soc. 135, 10503–10511 (2013).

    PubMed  CAS  Google Scholar 

  33. Liu, K. S., Li, M. J., Lai, C. C. & Chiu, S. H. Incarceration of higher-order fullerenes within cyclotriveratrylene-based hemicarcerands allows selective isolation of C76, C78, and C84 from a commercial fullerene mixture. Chem. Eur. J. 22, 17468–17476 (2016).

    PubMed  CAS  Google Scholar 

  34. Sun, W. D. et al. Self-assembled carcerand-like cage with a thermoregulated selective binding preference for purification of high-purity C60 and C70. J. Org. Chem. 83, 14667–14675 (2018).

    PubMed  CAS  Google Scholar 

  35. Kawano, S.-I., Fukushima, T. & Tanaka, K. Specific and oriented encapsulation of fullerene C70 into a supramolecular double-decker cage composed of shape-persistent macrocycles. Angew. Chem. Int. Ed. 57, 14827–14831 (2018).

    CAS  Google Scholar 

  36. García-Simón, C. et al. Sponge-like molecular cage for purification of fullerenes. Nat. Commun. 5, 5557 (2014).

    PubMed  Google Scholar 

  37. Meng, W. et al. A self-assembled M8L6 cubic cage that selectively encapsulates large aromatic guests. Angew. Chem. Int. Ed. 50, 3479–3483 (2011).

    CAS  Google Scholar 

  38. Ubasart, E. et al. Straightforward supramolecular purification of C84 from a fullerene extract. Org. Chem. Front. 8, 4101–4105 (2021).

    CAS  Google Scholar 

  39. Shoji, Y., Tashiro, K. & Aida, T. Selective extraction of higher fullerenes using cyclic dimers of zinc porphyrins. J. Am. Chem. Soc. 126, 6570–6571 (2004).

    PubMed  CAS  Google Scholar 

  40. Leonhardt, V., Fimmel, S., Krause, A.-M. & Beuerle, F. A covalent organic cage compound acting as a supramolecular shadow mask for the regioselective functionalization of C60. Chem. Sci. 11, 8409–8415 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  41. Ubasart, E. et al. A three-shell supramolecular complex enables the symmetry-mismatched chemo- and regioselective bis-functionalization of C60. Nat. Chem. 13, 420–427 (2021).

    PubMed  CAS  Google Scholar 

  42. Lu, Z. et al. Enantioselective fullerene functionalization through stereochemical information transfer from a self-assembled cage. Nat. Chem. 15, 405–412 (2023).

    PubMed  CAS  Google Scholar 

  43. Rizzuto, F. J., Wood, D. M., Ronson, T. K. & Nitschke, J. R. Tuning the redox properties of fullerene clusters within a metal-organic capsule. J. Am. Chem. Soc. 139, 11008–11011 (2017).

    PubMed  CAS  Google Scholar 

  44. Hasegawa, S. et al. Long-lived C60 radical anion stabilized inside an electron-deficient coordination cage. J. Am. Chem. Soc. 143, 9718–9723 (2021).

    PubMed  CAS  Google Scholar 

  45. Tsutsui, T., Catti, L., Yoza, K. & Yoshizawa, M. An atropisomeric M2L4 cage mixture displaying guest-induced convergence and strong guest emission in water. Chem. Sci. 11, 8145–8150 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  46. Martínez-Agramunt, V. & Peris, E. Photocatalytic properties of a palladium metallosquare with encapsulated fullerenes via singlet oxygen generation. Inorg. Chem. 58, 11836–11842 (2019).

    PubMed  Google Scholar 

  47. Banerjee, R., Chakraborty, D., Jhang, W.-T., Chan, Y.-T. & Mukherjee, P. S. Structural switching of a distorted trigonal metal–organic cage to a tetragonal cage and singlet oxygen mediated oxidations. Angew. Chem. Int. Ed. 62, e202305338 (2023).

    CAS  Google Scholar 

  48. Sun, Q. F., Sato, S. & Fujita, M. An M12(L1)12(L2)12 cantellated tetrahedron: a case study on mixed-ligand self-assembly. Angew. Chem. Int. Ed. 53, 13510–13513 (2014).

    CAS  Google Scholar 

  49. Preston, D., Barnsley, J. E., Gordon, K. C. & Crowley, J. D. Controlled formation of heteroleptic [Pd2(La)2(Lb)2]4+ cages. J. Am. Chem. Soc. 138, 10578–10585 (2016).

    PubMed  CAS  Google Scholar 

  50. Zhang, L. et al. Desymmetrized vertex design toward a molecular cage with unusual topology. Angew. Chem. Int. Ed. 59, 20846–20851 (2020).

    CAS  Google Scholar 

  51. Tarzia, A., Lewis, J. E. M. & Jelfs, K. E. High-throughput computational evaluation of low symmetry Pd2L4 cages to aid in system design. Angew. Chem. Int. Ed. 60, 20879–20887 (2021).

    CAS  Google Scholar 

  52. Tang, X., Chu, D., Gong, W., Cui, Y. & Liu, Y. Metal–organic cages with missing linker defects. Angew. Chem. Int. Ed. 60, 9099–9105 (2021).

    CAS  Google Scholar 

  53. Wang, J. H. et al. Altering the properties of spiropyran switches using coordination cages with different symmetries. J. Am. Chem. Soc. 144, 21244–21254 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  54. Chen, B. et al. Cooperativity of steric bulk and H-bonding in coordination sphere engineering: heteroleptic Pd-II cages and bowls by design. Chem. Sci. 13, 1829–1834 (2022).

    PubMed  PubMed Central  Google Scholar 

  55. Liu, Y. et al. Controlled construction of heteroleptic [Pd2(LA)2(LB)(LC)]4+ cages: a facile approach for site-selective endo-functionalization of supramolecular cavities. Angew. Chem. Int. Ed. 62, e202217215 (2023).

    CAS  Google Scholar 

  56. Kuck, D. A facile route to benzoannelated centrotriquinanes. Angew. Chem. Int. Ed. 23, 508–509 (1984).

    Google Scholar 

  57. Markopoulos, G. et al. Tribenzotriquinacene: a versatile synthesis and C3-chiral platforms. Angew. Chem. Int. Ed. 51, 12884–12887 (2012).

    CAS  Google Scholar 

  58. Wagner, P. et al. Chiral self-sorting of giant cubic [8+12] salicylimine cage compounds. Angew. Chem. Int. Ed. 60, 8896–8904 (2021).

    CAS  Google Scholar 

  59. Benke, B. P., Kirschbaum, T., Graf, J., Gross, J. H. & Mastalerz, M. Dimeric and trimeric catenation of giant chiral [8+12] imine cubes driven by weak supramolecular interactions. Nat. Chem. 15, 413–423 (2023).

    PubMed  CAS  Google Scholar 

  60. Kirchner, P. H. et al. A water-stable boronate ester cage. J. Am. Chem. Soc. 146, 5305–5315 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  61. Beaudoin, D., Rominger, F. & Mastalerz, M. Chiral self-sorting of [2+3] salicylimine cage compounds. Angew. Chem. Int. Ed. 56, 1244–1248 (2017).

    CAS  Google Scholar 

  62. Wagner, P., Rominger, F., Gross, J. H. & Mastalerz, M. Solvent-controlled quadruple catenation of giant chiral [8+12] salicylimine cubes driven by weak hydrogen bonding. Angew. Chem. Int. Ed. 62, e202217251 (2023).

    CAS  Google Scholar 

  63. Strübe, J., Neumann, B., Stammler, H.-G. & Kuck, D. Solid-state enantiopure organic nanocubes formed by self organization of a C3-symmetrical tribenzotriquinacene. Chem. Eur. J. 15, 2256–2260 (2009).

    PubMed  Google Scholar 

  64. Mughal, E. U. & Kuck, D. Merging tribenzotriquinacene with hexa-peri-hexabenzocoronene: a cycloheptatriene unit generated by Scholl reaction. Chem. Commun. 48, 8880–8882 (2012).

    CAS  Google Scholar 

  65. Qu, H. et al. Molecular face-rotating cube with emergent chiral and fluorescence properties. J. Am. Chem. Soc. 139, 18142–18145 (2017).

    PubMed  CAS  Google Scholar 

  66. Li, Y. & Flood, A. H. Pure C–H hydrogen bonding to chloride ions: a preorganized and rigid macrocyclic receptor. Angew. Chem. Int. Ed. 47, 2649–2652 (2008).

    CAS  Google Scholar 

  67. Maglic, J. B. & Lavendomme, R. MoloVol: an easy-to-use program for analyzing cavities, volumes and surface areas of chemical structures. J. Appl. Crystallogr. 55, 1033–1044 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  68. Dobashi, H., Catti, L., Tanaka, Y., Akita, M. & Yoshizawa, M. N-doping of polyaromatic capsules: small cavity modification leads to large change in host–guest interactions. Angew. Chem. Int. Ed. 59, 11881–11885 (2020).

    CAS  Google Scholar 

  69. Diederich, F. et al. Fullerene isomerism: isolation of C2v-C78 and D3-C78. Science 254, 1768–1770 (1991).

    PubMed  CAS  Google Scholar 

  70. Kikuchi, K. et al. NMR characterization of isomers of C78, C82 and C84 fullerenes. Nature 357, 142–145 (1992).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (grants 2022YFA1503300 and 2021YFA1500400 to Q.-F.S. and grant 2022YFB3807700 to X.L.), National Natural Science Foundation of China (grant 22201285 to X.-Q.G., grant 22171264 to Q.-F.S., grants 21925104 and 92261204 to X.L. and grant 61825107 to Q.-F.S.) and Science Foundation of Fujian Province (grant 202lJ02016 to Q.-F.S.). We thank the staff of BL17B1 beamline at National Centre for Protein Sciences Shanghai and Shanghai Synchrotron Radiation Facility (SSRF), Shanghai, People’s Republic of China, for assistance during data collection.

Author information

Authors and Affiliations

Authors

Contributions

Q.-F.S., X.L., X.-Q.G., P.Y. and L.B. conceived the project, carried out research, analysed all experiments and wrote the manuscript. L.-P.Z. performed the mass measurements. L.-X.C. and S.-J.H. contributed to X-ray crystallographic analysis. X.-F.D. contributed to the figure production. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Xing Lu or Qing-Fu Sun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Jonathan Charmant, Xavi Ribas, Giuseppe Trusso Sfrazzetto and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alison Stoddart, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–162 and Tables 1–27.

Supplementary Data 1

Crystallographic data for C2v-C78 (CCDC reference 2278920).

Supplementary Data 2

Crystallographic data for C2v′-C78 (CCDC reference 2278921).

Supplementary Data 3

Crystallographic data for C3-1 (CCDC reference 2307962).

Supplementary Data 4

Crystallographic data for P-1 (CCDC reference 2307963).

Supplementary Data 5

Crystallographic data for 4 (CCDC reference 2307964).

Supplementary Data 6

Crystallographic data for T-3 (CCDC reference 2307965).

Supplementary Data 7

Crystallographic data for C60S4-4 (CCDC reference 2307966).

Supplementary Data 8

Crystallographic data for C70S4-4 (CCDC reference 2307967).

Source data

Source Data Fig. 2

ESI-TOF-MS of T-3.

Source Data Fig. 3

ESI-TOF-MS of S4-4 and C60S4-4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, XQ., Yu, P., Zhou, LP. et al. Low-symmetry coordination cages enable recognition specificity and selective enrichment of higher fullerene isomers. Nat. Synth 4, 359–369 (2025). https://doi.org/10.1038/s44160-024-00697-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-024-00697-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing