Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electrocatalytic CO2 hydrogenation to C2+ alcohols catalysed by Pr–Cu oxide heterointerfaces

Subjects

Abstract

Efficient production of C2+ alcohols from the electrochemical CO2 reduction reaction (CO2RR) is of great interest. However, the CO2RR to C2+ alcohols has low selectivity and current density due to competing C2+ pathways that produce ethylene (C2H4). Here we report a stepwise precipitation and stepwise calcination strategy to create Pr–Cu oxide heterointerfaces (Pr6O11–Cu-SS) that produces an efficient CO2RR to C2+ alcohols. Pr6O11–Cu-SS exhibited high productivity and Faradaic efficiency (FE) for C2+ alcohols. At −1.08 V versus RHE, the current density and FE of C2+ alcohols reached 700 mA cm−2 and 71.3%, respectively, with the FEs of ethanol and n-propanol reaching 58.6% and 12.7%, respectively, under these conditions. The C2+ alcohols/C2H4 ratio was as high as 12:1. Experimental and theoretical studies indicated that the performance of the catalyst results from the existence of a Pr4+/Pr3+ structure in Pr6O11–Cu-SS, which is able to effectively stabilize Cuδ+/Cu0 via a unique Pr–O–Cu linkage and form stable oxide heterointerfaces. The binding strength and binding type of *CO were then altered on the heterointerfaces to form a mixed adsorption configuration, which induces asymmetric carbon–carbon coupling and selective hydrodeoxygenation to promote the generation of C2+ alcohols.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthesis and electron microscopic analysis of the Pr6O11–Cu-SS catalyst.
Fig. 2: Electrochemical CO2RR performance.
Fig. 3: Spectroscopic characterization.
Fig. 4: Structural evolution of the Pr6O11–Cu-SS catalyst during the CO2RR.
Fig. 5: Mechanistic insight from DFT calculations.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in the paper and its Supplementary Information. Source data are provided with this paper.

References

  1. Mussatto, S. I. et al. Technological trends, global market, and challenges of bio-ethanol production. Biotechnol. Adv. 28, 817–830 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Birdja, Y. Y. et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 4, 732–745 (2019).

    Article  CAS  Google Scholar 

  3. Zhu, Q. et al. Carbon dioxide electroreduction to C2 products over copper–cuprous oxide derived from electrosynthesized copper complex. Nat. Commun. 10, 3851 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ding, P. et al. Metal-based electrocatalytic conversion of CO2 to formic acid/formate. J. Mater. Chem. A 8, 21947–21960 (2020).

    Article  CAS  Google Scholar 

  5. Shi, Y. et al. Unveiling hydrocerussite as an electrochemically stable active phase for efficient carbon dioxide electroreduction to formate. Nat. Commun. 11, 3415 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Calle-Vallejo, F. & Koper, M. T. M. Theoretical considerations on the electroreduction of CO to C2 species on Cu(100) electrodes. Angew. Chem. Int. Ed. 52, 7282–7285 (2013).

    Article  CAS  Google Scholar 

  7. Lum, Y., Cheng, T., Goddard, W. A. & Ager, J. W. Electrochemical CO reduction builds solvent water into oxygenate products. J. Am. Chem. Soc. 140, 9337–9340 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Kortlever, R., Shen, J., Schouten, K. J. P., Calle-Vallejo, F. & Koper, M. T. M. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 6, 4073–4082 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Chen, C. et al. Highly efficient electroreduction of CO2 to C2+ alcohols on heterogeneous dual active sites. Angew. Chem. Int. Ed. 59, 16459–16464 (2020).

    Article  CAS  Google Scholar 

  10. Liu, X. et al. Understanding trends in electrochemical carbon dioxide reduction rates. Nat. Commun. 8, 15438 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liang, Y. et al. Efficient ethylene electrosynthesis through C–O cleavage promoted by water dissociation. Nat. Synth. 3, 1104–1112 (2024).

    Article  CAS  Google Scholar 

  12. Kong, S. et al. Delocalization state-induced selective bond breaking for efficient methanol electrosynthesis from CO2. Nat. Catal. 6, 6–15 (2023).

    Article  CAS  Google Scholar 

  13. Zhao, Z., Huang, J., Liao, P. & Chen, X. Highly efficient electroreduction of CO2 to ethanol via asymmetric C–C coupling by a metal–organic framework with heterodimetal dual sites. J. Am. Chem. Soc. 145, 26783–26790 (2023).

    Article  CAS  PubMed  Google Scholar 

  14. Liu, Z. et al. Switching CO2 electroreduction toward ethanol by delocalization state-tuned bond cleavage. J. Am. Chem. Soc. 146, 14260–14266 (2024).

    Article  CAS  PubMed  Google Scholar 

  15. Hoang, T. T. H. et al. Nanoporous copper–silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol. J. Am. Chem. Soc. 140, 5791–5797 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Clark, E. L., Hahn, C., Jaramillo, T. F. & Bell, A. T. Electrochemical CO2 reduction over compressively strained CuAg surface alloys with enhanced multi-carbon oxygenate selectivity. J. Am. Chem. Soc. 139, 15848–15857 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Lee, S., Park, G. & Lee, J. Importance of Ag–Cu biphasic boundaries for selective electrochemical reduction of CO2 to ethanol. ACS Catal. 7, 8594–8604 (2017).

    Article  CAS  Google Scholar 

  18. Hori, Y., Murata, A. & Takahashi, R. Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. J. Chem. Soc. Faraday Trans. 1 85, 2309–2326 (1989).

    Article  CAS  Google Scholar 

  19. Kuhl, K. P., Cave, E. R., Abram, D. N. & Jaramillo, T. F. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5, 7050–7059 (2012).

    Article  CAS  Google Scholar 

  20. Wang, P. et al. Phase and structure engineering of copper tin heterostructures for efficient electrochemical carbon dioxide reduction. Nat. Commun. 9, 4933 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhuang, T. et al. Steering post-C–C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols. Nat. Catal. 1, 421–428 (2018).

    Article  CAS  Google Scholar 

  22. Ma, W. et al. Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper. Nat. Catal. 3, 478–487 (2020).

    Article  CAS  Google Scholar 

  23. Hoang, T. T. H., Ma, S., Gold, J. I., Kenis, P. J. A. & Gewirth, A. A. Nanoporous copper films by additive-controlled electrodeposition: CO2 reduction catalysis. ACS Catal. 7, 3313–3321 (2017).

    Article  CAS  Google Scholar 

  24. Soodi, S. et al. Selective electroreduction of CO2 to C2+ products on cobalt decorated copper catalysts. Chem. Synth. 4, 44 (2024).

    Article  CAS  Google Scholar 

  25. Gu, Z. et al. Efficient electrocatalytic CO2 reduction to C2+ alcohols at defect-site-rich Cu surface. Joule 5, 429–440 (2021).

    Article  CAS  Google Scholar 

  26. Xu, A. et al. Copper/alkaline earth metal oxide interfaces for electrochemical CO2-to-alcohol conversion by selective hydrogenation. Nat. Catal. 5, 1081–1088 (2022).

    Article  CAS  Google Scholar 

  27. Sun, H. et al. Hierarchical palladium–copper–silver porous nanoflowers as efficient electrocatalysts for CO2 reduction to C2+ products. Acta Phys. -Chim. Sin. 40, 2307007 (2024).

    Article  Google Scholar 

  28. Yang, B. et al. Electrocatalytic CO2 reduction to alcohols by modulating the molecular geometry and Cu coordination in bicentric copper complexes. Nat. Commun. 13, 5122 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jiang, Y., Fu, H., Liang, Z., Zhang, Q. & Du, Y. Rare earth oxide based electrocatalysts: synthesis, properties and applications. Chem. Soc. Rev. 53, 714–763 (2024).

    Article  CAS  PubMed  Google Scholar 

  30. Liu, W., Bai, P., Wei, S., Yang, C. & Xu, L. Gadolinium changes the local electron densities of nickel 3d orbitals for efficient electrocatalytic CO2 reduction. Angew. Chem. Int. Ed. 61, e202201166 (2022).

    Article  CAS  Google Scholar 

  31. Gao, Q., Zhang, W., Shi, Z., Yang, L. & Tang, Y. Structural design and electronic modulation of transition-metal-carbide electrocatalysts toward efficient hydrogen evolution. Adv. Mater. 31, 1802880 (2019).

    Article  Google Scholar 

  32. Zheng, B. et al. Rare-earth doping in nanostructured inorganic materials. Chem. Rev. 122, 5519–5603 (2022).

    Article  CAS  PubMed  Google Scholar 

  33. Lv, J. J. et al. Microenvironment engineering for the electrocatalytic CO2 reduction reaction. Angew. Chem. Int. Ed. 61, e202207252 (2022).

    Article  CAS  Google Scholar 

  34. Hahn, C. & Jaramillo, T. F. Using microenvironments to control reactivity in CO2 electrocatalysis. Joule 4, 292–294 (2020).

    Article  Google Scholar 

  35. Su, L. et al. Pr6O11: temperature-dependent oxygen vacancy regulation and catalytic performance for lithium–oxygen batteries. ACS Appl. Mater. Interfaces 14, 40975–40984 (2022).

    Article  CAS  PubMed  Google Scholar 

  36. Abu-Zied, B. M. Controlled synthesis of praseodymium oxide nanoparticles obtained by combustion route: effect of calcination temperature and fuel to oxidizer ratio. Appl. Sur. Sci. 471, 246–255 (2019).

    Article  CAS  Google Scholar 

  37. Zhang, Y. et al. Low-coordinated copper facilitates the *CH2CO affinity at enhanced rectifying interface of Cu/Cu2O for efficient CO2-to-multicarbon alcohols conversion. Nat. Commun. 15, 5172 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Feng, J. et al. Hydrophobic SiO2 armor: stabilizing Cuδ+ to enhance CO2 electroreduction toward C2+ products in strong acidic environments. ACS Nano 18, 15303–15311 (2024).

    Article  Google Scholar 

  39. Liu, J. et al. Switching between C2+ products and CH4 in CO2 electrolysis by tuning the composition and structure of rare-earth/copper catalysts. J. Am. Chem. Soc. 145, 23037–23047 (2023).

    Article  CAS  PubMed  Google Scholar 

  40. Feng, J. et al. Improving CO2-to-C2+ product electroreduction efficiency via atomic lanthanide dopant-induced tensile-strained CuOx catalysts. J. Am. Chem. Soc. 145, 9857–9866 (2023).

    Article  CAS  PubMed  Google Scholar 

  41. Zhang, Z. et al. pH matters when reducing CO2 in an electrochemical flow cell. ACS Energy Lett. 5, 3101–3107 (2020).

    Article  CAS  Google Scholar 

  42. Kim, J. Y. T., Sellers, C., Hao, S., Senftle, T. P. & Wang, H. Different distributions of multi-carbon products in CO2 and CO electroreduction under practical reaction conditions. Nat. Catal. 6, 1115–1124 (2023).

    Article  CAS  Google Scholar 

  43. Peng, C. et al. (111) Facet-oriented Cu2Mg intermetallic compound with Cu3–Mg sites for CO2 electroreduction to ethanol with industrial current density. Angew. Chem. Int. Ed. 63, e202316907 (2024).

    Article  CAS  Google Scholar 

  44. Li, H. et al. High-rate CO2 electroreduction to C2+ products over a copper–copper iodide catalyst. Angew. Chem. Int. Ed. 60, 14329–14333 (2021).

    Article  CAS  Google Scholar 

  45. Zhuang, T. et al. Tunable CO2 electroreduction to ethanol and ethylene with controllable interfacial wettability. Nat. Commun. 14, 3575 (2023).

    Article  Google Scholar 

  46. Sun, W. et al. V-doped Cu2Se hierarchical nanotubes enabling flow-cell CO2 electroreduction to ethanol with high efficiency and selectivity. Adv. Mater. 34, 2207691 (2022).

    Article  CAS  Google Scholar 

  47. Wang, X. et al. Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation. Nat. Energy 5, 478–486 (2020).

    Article  CAS  Google Scholar 

  48. Li, F. et al. Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule–metal catalyst interfaces. Nat. Catal. 3, 75–82 (2020).

    Article  CAS  Google Scholar 

  49. Kim, J. Y. et al. Selective hydrocarbon or oxygenate production in CO2 electroreduction over metallurgical alloy catalysts. Nat. Synth. 3, 452–465 (2024).

    Article  CAS  Google Scholar 

  50. Shayesteh Zeraati, A. et al. Carbon- and energy-efficient ethanol electrosynthesis via interfacial cation enrichment. Nat. Synth. 4, 75–83 (2025).

  51. Li, J. et al. Electrochemical acetate production from high-pressure gaseous and liquid CO2. Nat. Catal. 6, 1151–1163 (2023).

    Article  CAS  Google Scholar 

  52. Cai, Y. et al. Self-pressurizing nanoscale capsule catalysts for CO2 electroreduction to acetate or propanol. Nat. Synth. 3, 891–902 (2024).

    Article  CAS  Google Scholar 

  53. Vos, R. E. & Koper, M. T. M. Nickel as electrocatalyst for CO(2) reduction: effect of temperature, potential, partial pressure, and electrolyte composition. ACS Catal. 14, 4432–4440 (2023).

    Article  Google Scholar 

  54. Abdinejad, M. et al. Eliminating redox-mediated electron transfer mechanisms on a supported molecular catalyst enables CO2 conversion to ethanol. Nat. Catal. 7, 1109–1119 (2024).

    Article  CAS  Google Scholar 

  55. Su, Z. et al. Probing the actual role and activity of oxygen vacancies in toluene catalytic oxidation: evidence from in situ XPS/NEXAFS and DFT + U calculation. ACS Catal. 13, 3444–3455 (2023).

    Article  CAS  Google Scholar 

  56. Zhong, X. et al. Optimizing oxygen vacancies through grain boundary engineering to enhance electrocatalytic nitrogen reduction. Proc. Natl Acad. Sci. USA 120, e2306673120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gu, W., Liu, J., Hu, M., Wang, F. & Song, Y. La2O2CO3 encapsulated La2O3 nanoparticles supported on carbon as superior electrocatalysts for oxygen reduction reaction. ACS Appl. Mater. Interfaces 7, 26914–26922 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Zhong, X. et al. Autogenic synthesis of green- and red-emitting single-phase Pr2O2CO3 and PrO1.833 luminescent nanopowders. Inorg. Chem. 49, 10067–10073 (2010).

    Article  Google Scholar 

  59. Zhang, H. et al. Three-dimensional inhomogeneity of zeolite structure and composition revealed by electron ptychography. Science 380, 633–638 (2023).

    Article  CAS  PubMed  Google Scholar 

  60. Zhao, Y. et al. Speciation of Cu surfaces during the electrochemical CO reduction reaction. J. Am. Chem. Soc. 142, 9735–9743 (2020).

    CAS  PubMed  Google Scholar 

  61. Gunathunge, C. et al. Spectroscopic observation of reversible surface reconstruction of copper electrodes under CO2 reduction. J. Phys. Chem. C 121, 12337–12344 (2017).

    Article  CAS  Google Scholar 

  62. Cai, R. et al. Engineering Cu(I)/Cu(0) interfaces for efficient ethanol production from CO2 electroreduction. Chem 10, 211–233 (2017).

    Article  Google Scholar 

  63. She, X. et al. Pure-water-fed, electrocatalytic CO2 reduction to ethylene beyond 1,000 h stability at 10 Å. Nat. Energy 9, 81–91 (2024).

    Article  CAS  Google Scholar 

  64. Tan, Y. et al. Discovery of hydrogen spillover-based binary electrocatalysts for hydrogen evolution: from theory to experiment. ACS Catal. 12, 11821–11829 (2022).

    Article  CAS  Google Scholar 

  65. Ju, L. et al. Controllable CO2 electrocatalytic reduction via ferroelectric switching on single atom anchored In2Se3 monolayer. Nat. Commun. 12, 5128 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Xu, Q. et al. Understanding the synergistic mechanism of single atom Co-modified perovskite oxide for piezo-photocatalytic CO2 reduction. Appl. Catal. B 338, 123058 (2023).

    Article  CAS  Google Scholar 

  67. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  68. Kresse, G. & Furthmüller, J. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

    Article  CAS  Google Scholar 

  69. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1997).

    Article  Google Scholar 

  70. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  PubMed  Google Scholar 

  71. Wang, V. et al. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 267, 108033 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Key Research and Development Program of China (2020YFA0710203, 2023YFA1507400), the National Natural Science Foundation of China (22279146, 22102192, 22033009, 22293015 and 22121002), the CAS Project for Young Scientists in Basic Research (grant number YSBR-050) and the Photon Science Center for Carbon Neutrality, China Postdoctoral Science Foundation (BX20200336 and 2020M680680), S&T Program of Hebei (B2021208074).

Author information

Authors and Affiliations

Authors

Contributions

Q.Z. and B.H. conceived and supervised the project. J.L., Q.Z. and B.H. wrote the paper. J.L. conducted the experimental work. P.L., S.J., Y.W., L.J., Z.L., J.Z., Q.Q., X.K. and X.S. assisted with X-ray diffraction, SEM, NMR, TEM and XAFS measurements. All authors discussed the results and contributed to the final paper.

Corresponding authors

Correspondence to Qinggong Zhu or Buxing Han.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Alexandra Groves, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Notes 1–5, Figs. 1–80, Tables 1–7 and references 1–53.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Li, P., Jia, S. et al. Electrocatalytic CO2 hydrogenation to C2+ alcohols catalysed by Pr–Cu oxide heterointerfaces. Nat. Synth 4, 730–743 (2025). https://doi.org/10.1038/s44160-025-00752-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-025-00752-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing