Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Unassisted electrochemical H2O2 production coupled to glycerol oxidation

Abstract

Hydrogen peroxide (H2O2) is not only a key eco-friendly oxidizer but also a promising energy carrier with an energy density comparable to that of compressed hydrogen. The industrial production of H2O2 relies on the energy-intensive and environmentally detrimental anthraquinone process, necessitating the exploration of greener alternatives. Here we demonstrate sustainable and unassisted electrochemical H2O2 production (via the two-electron oxygen reduction reaction) coupled to the oxidative valorization of glycerol, a biomass energy by-product, operating without external electric or solar energy inputs. We applied bismuth-loaded Pt and oxidized carbon nanotube electrocatalysts, for glycerol oxidation reaction and two-electron oxygen reduction reaction, respectively, which possess onset potentials close to the theoretical values for the electrochemical reactions. With this system, we achieved a high H2O2 production rate of approximately 8.475 μmol cm−2 min−1 and high glycerate selectivity for in situ glycerol oxidation reaction (74%), while producing renewable electricity on-site.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustration of the system demonstrating unassisted glycerol oxidation and oxygen reduction.
Fig. 2: Characteristics of glycerol oxidation catalysts.
Fig. 3: Unassisted H2O2 production and computational calculation results.
Fig. 4: In situ application of unassisted produced H2O2 to glycerol oxidation.

Similar content being viewed by others

Data availability

All relevant data are provided within this Article and its Supplementary Information.

References

  1. Han, G. F. et al. Building and identifying highly active oxygenated groups in carbon materials for oxygen reduction to H2O2. Nat. Commun. 11, 2209 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Mehrotra, R., Oh, D. & Jang, J. W. Unassisted selective solar hydrogen peroxide production by an oxidised buckypaper-integrated perovskite photocathode. Nat. Commun. 12, 6644 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Mase, K., Yoneda, M., Yamada, Y. & Fukuzumi, S. Seawater usable for production and consumption of hydrogen peroxide as a solar fuel. Nat. Commun. 7, 11470 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Jung, E. et al. Atomic-level tuning of Co–N–C catalyst for high-performance electrochemical H2O2 production. Nat. Mater. 19, 436–442 (2020).

    Article  PubMed  CAS  Google Scholar 

  5. Perry, S. C. et al. Electrochemical synthesis of hydrogen peroxide from water and oxygen. Nat. Rev. Chem. 3, 442–458 (2019).

    Article  CAS  Google Scholar 

  6. Xia, C., Xia, Y., Zhu, P., Fan, L. & Wang, H. Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte. Science 366, 226–231 (2019).

    Article  PubMed  CAS  Google Scholar 

  7. Montoya, J. H. et al. Materials for solar fuels and chemicals. Nat. Mater. 16, 70–81 (2016).

    Article  PubMed  Google Scholar 

  8. Wang, Q., Pornrungroj, C., Linley, S. & Reisner, E. Strategies to improve light utilization in solar fuel synthesis. Nat. Energy 7, 13–24 (2021).

    Article  Google Scholar 

  9. CO2 Emissions from Electricity Generation Factors, World 1990–2022 (IEA, 2025); https://www.iea.org/data-and-statistics/data-tools/energy-statistics-data-browser?country=WORLD&fuel=Energy%20supply&indicator=ElecGenByFuel

  10. Verma, S., Lu, S. & Kenis, P. J. A. Co-electrolysis of CO2 and glycerol as a pathway to carbon chemicals with improved technoeconomics due to low electricity consumption. Nat. Energy 4, 466–474 (2019).

    Article  CAS  Google Scholar 

  11. Global Biofuel Production in 2019 and Forecast to 2025 (IEA, 2020); https://www.iea.org/data-and-statistics/charts/global-biofuel-production-in-2019-and-forecast-to-2025

  12. Low-Carbon Electricity Generation by Source, World 1990–2022 (IEA, 2025); https://www.iea.org/data-and-statistics/data-tools/energy-statistics-data-browser?country=WORLD&fuel=Energy%20supply&indicator=ElecGenByFuelLC

  13. Liu, D. et al. Selective photoelectrochemical oxidation of glycerol to high value-added dihydroxyacetone. Nat. Commun. 10, 1779 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Luo, H. et al. Progress and perspectives in photo‐ and electrochemical‐oxidation of biomass for sustainable chemicals and hydrogen production. Adv. Energy Mater. 11, 2101180 (2021).

    Article  CAS  Google Scholar 

  15. Li, T. & Harrington, D. A. An overview of glycerol electrooxidation mechanisms on Pt, Pd and Au. ChemSusChem 14, 1472–1495 (2021).

    Article  PubMed  CAS  Google Scholar 

  16. Kwon, Y., Birdja, Y., Spanos, I., Rodriguez, P. & Koper, M. T. M. Highly selective electro-oxidation of glycerol to dihydroxyacetone on platinum in the presence of bismuth. ACS Catal. 2, 759–764 (2012).

    Article  CAS  Google Scholar 

  17. Wang, X. et al. The role of bismuth in suppressing the CO poisoning in alkaline methanol electrooxidation: switching the reaction from the CO to formate pathway. Nano Lett. 23, 685–693 (2023).

    Article  PubMed  CAS  Google Scholar 

  18. Wang, C. Y. et al. Intermetallic PtBi nanoplates with high catalytic activity towards electro‐oxidation of formic acid and glycerol. ChemElectroChem 7, 239–245 (2020).

    Article  CAS  Google Scholar 

  19. de Souza, M. B. C. et al. Bi-modified Pt electrodes toward glycerol electrooxidation in alkaline solution: effects on activity and selectivity. ACS Catal. 9, 5104–5110 (2019).

    Article  Google Scholar 

  20. Zope, B. N., Hibbitts, D. D., Neurock, M. & Davis, R. J. Reactivity of the gold/water interface during selective oxidation catalysis. Science 330, 74–78 (2010).

    Article  PubMed  CAS  Google Scholar 

  21. Li, Y., Wei, X., Han, S., Chen, L. & Shi, J. MnO2 electrocatalysts coordinating alcohol oxidation for ultra‐durable hydrogen and chemical productions in acidic solutions. Angew. Chem. Int. Ed. 60, 21464–21472 (2021).

    Article  CAS  Google Scholar 

  22. Xi, N. et al. Polyhedral coordination determined Co–O activity for electrochemical oxidation of biomass alcohols. Adv. Energy Mater. 13, 2301572 (2023).

    Article  CAS  Google Scholar 

  23. Nan, B. et al. Unique structure of active platinum–bismuth site for oxidation of carbon monoxide. Nat. Commun. 12, 3342 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Xie, J. et al. Influence of dioxygen on the promotional effect of Bi during Pt-catalyzed oxidation of 1,6-hexanediol. ACS Catal. 6, 4206–4217 (2016).

    Article  CAS  Google Scholar 

  25. Fang, S. et al. Uncovering near-free platinum single-atom dynamics during electrochemical hydrogen evolution reaction. Nat. Commun. 11, 1029 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Jiang, K. et al. Single platinum atoms embedded in nanoporous cobalt selenide as electrocatalyst for accelerating hydrogen evolution reaction. Nat. Commun. 10, 1743 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Greczynski, G. & Hultman, L. Compromising science by ignorant instrument calibration-need to revisit half a century of published XPS data. Angew. Chem. Int. Ed. 59, 5002–5006 (2020).

    Article  CAS  Google Scholar 

  28. Stamenkovic, V. R. et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315, 493–497 (2007).

    Article  PubMed  CAS  Google Scholar 

  29. Hao, Y.-C. et al. Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water. Nat. Catal. 2, 448–456 (2019).

    Article  CAS  Google Scholar 

  30. Kang, T. S. et al. High-performance amorphous InGaZnO thin-film transistors via staked ultrathin high-k TaOx buffer layer grown on low-k SiO2 gate oxide. Adv. Electron. Mater. 3, 1600452 (2017).

    Article  Google Scholar 

  31. Zheng, W., Liu, M. & Lee, L. Y. S. Best practices in using foam-type electrodes for electrocatalytic performance benchmark. ACS Energy Lett. 5, 3260–3264 (2020).

    Article  CAS  Google Scholar 

  32. Kwon, Y., Lai, S. C., Rodriguez, P. & Koper, M. T. Electrocatalytic oxidation of alcohols on gold in alkaline media: base or gold catalysis? J. Am. Chem. Soc. 133, 6914–6917 (2011).

    Article  PubMed  CAS  Google Scholar 

  33. Lu, Z. et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat. Catal. 1, 156–162 (2018).

    Article  CAS  Google Scholar 

  34. Pembere, A. M. & Luo, Z. Jones oxidation of glycerol catalysed by small gold clusters. Phys. Chem. Chem. Phys. 19, 6620–6625 (2017).

    Article  PubMed  CAS  Google Scholar 

  35. Avilés Acosta, J. E., Lin, J. C., Un Lee, D., Jaramillo, T. F. & Hahn, C. Electrochemical flow reactor design allows tunable mass transport conditions for operando surface enhanced infrared absorption spectroscopy. ChemCatChem 15, e202300520 (2023).

    Article  Google Scholar 

  36. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  37. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  PubMed  CAS  Google Scholar 

  38. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  PubMed  Google Scholar 

  39. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  40. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea for the grant by the South Korea Ministry of Science and ICT (MSIT) (grant nos. RS-2023-00222006, 2022H1D3A3A01081140 and RS-2024-00456139) (J.-W.J.), Basic Science Research Program (grant no. RS-2024-00451160), National Research Council of Science and Technology (NST) grant by the Korea government (MSIT) (grant no. GTL24011-102) (D.-H.S), US Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, and Catalysis Science Program to the SUNCAT Center for Interface Science and Catalysis, for ATR-FTIR studies, sample preparation, and TEM (T.F.J., S.-W.L.). The computational work was supported by the Supercomputing Center/Korea Institute of Science and Technology Information with supercomputing resources, including technical support (grant no. KSC-2024-CRE-0440). D.U.L., A.C., J.E.A.A. and J.E.M. acknowledge a cooperative research and development agreement sponsored by TotalEnergies American Services, Inc. (affiliate of TotalEnergies SE) under agreement number TC02307 for electrochemical cell development and DFT calculations. J.E.M. acknowledges a graduate fellowship through the National Science Foundation Graduate Research Fellowship under grant no. DGE-1656518. Y.X. acknowledges NSERC for their support in the form of a Banting postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Contributions

D.O., S.W.H., D.Y.K., J.E.M., T.F.J., D.-H.S. and J.-W.J. conceptualized this study. D.O., S.W.H., D.Y.K. and J.E.M. curated data. D.O., J.E.M., J.E.A.A., S.-W.L., Y.X. and D.U.L. established methodology. J.L. helped with HPLC measurements. A.C. helped with DFT calculations. T.F.J., D.-H.S. and J.-W.J. directed the research. D.O. visualized the data. D.O., S.W.H., D.Y.K., J.E.M., T.F.J., D.-H.S. and J.-W.J. cowrote the paper.

Corresponding authors

Correspondence to Thomas F. Jaramillo, Dong-Hwa Seo or Ji-Wook Jang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks José Solla-Gullón, Kan Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alexandra Groves, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–3, Figs. 1–32 and Tables 1–3.

Supplementary Data 1

Numerical data for Supplementary Figs. 1–32 and Tables 1–3.

Source data

Source Data Fig. 2

Source data for Fig. 2.

Source Data Fig. 3

Source data for Fig. 3.

Source Data Fig. 4

Source data for Fig. 4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, D., Hwang, S.W., Kim, D.Y. et al. Unassisted electrochemical H2O2 production coupled to glycerol oxidation. Nat. Synth (2025). https://doi.org/10.1038/s44160-025-00774-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44160-025-00774-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing