Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synthesis of single-unit-cell-thick perovskites by liquid-phase confined assembly for high-performance ultrastable X-ray detectors

Abstract

The instability of halide perovskites under working conditions or during complex postprocessing is challenging for practical applications. Here we developed a room-temperature, two-phase assembling strategy to synthesize single-unit-cell perovskite chains within single-walled carbon nanotubes (SWCNTs). This approach is efficient, scalable and tailorable, and can be used to assemble a range of single-chain perovskites. The single-unit-cell-chain perovskites show unconventional stoichiometries (such as [Cs4PbI5]+) due to dimensionality reduction and are balanced by negatively charged nanotubes. A direct X-ray detector constructed with high-entropy-Cs3MCl6@SWCNT exhibits outstanding performance, with a high sensitivity of \(1.22\times10^{4}\,\upmu{\mathrm{C}}\,{\mathrm{Gy}}_{\mathrm{air}}^{-1}\,{\mathrm{cm}}^{-2}\), a low dark current density of 0.2 nA cm−2, a negligible dark current drift of 8.5 × 10−7 nA cm−1 s−1 V−1 and a superior detection limit of 16.6 nGyair s−1. These surpass various common semiconductor and state-of-the-art perovskite detectors due to the ionic character of perovskite@SWCNT inducing a strong cation–π interaction, suppressing ion migration. The device is stable under harsh conditions, including continuous X-ray irradiation, high temperatures, exposure to ambient air for 91 days and immersion for 96 h in water. This low-cost synthetic methodology paves the way for the commercialization of potential perovskite X-ray detectors for medical and industrial applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterization of CsPbI3@SWCNT.
Fig. 2: Universal synthesis of ABX3 and AB2X3 perovskites within SWCNTs and BNNTs.
Fig. 3: Characterization of medium- and high-entropy Cs3MCl6@SWCNT.
Fig. 4: MD simulations.
Fig. 5: Doping of ABX3@SWCNT by solution-phase ion exchange.
Fig. 6: High-entropy Cs3MCl6@SWCNT-based direct X-ray detector.

Similar content being viewed by others

Data availability

All data that support this work are available within the paper and its Supplementary Information. Source data are provided with this paper. Crystallographic information files have also been deposited in the Inorganic Crystal Structure Database under reference numbers ICSD 161481, 201285, 29067, 177350, 28082, 131089, 262924, 241488, 68819, 53835, and in Material Project under reference numbers mp-27336 and mp-1112341. These data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/ or https://next-gen.materialsproject.org/materials.

References

  1. Wang, Y. et al. Thermodynamically stabilized β-CsPbI-based perovskite solar cells with efficiencies >18%. Science 365, 591–595 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Kim, Y. C. et al. Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature 550, 87–91 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Wei, W. et al. Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging. Nat. Photon. 11, 315–321 (2017).

    Article  CAS  Google Scholar 

  4. Shrestha, S. et al. High-performance direct conversion X-ray detectors based on sintered hybrid lead triiodide perovskite wafers. Nat. Photon. 11, 436–440 (2017).

    Article  CAS  Google Scholar 

  5. Li, L. Q. et al. Monolithic integration of perovskite heterojunction on TFT backplanes through vapor deposition for sensitive and stable X-ray imaging. Sci. Adv. 10, eadj8659 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nozik, A. J. et al. Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem. Rev. 110, 6873–6890 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Ahmed, G. H., Yin, J., Bakr, O. M. & Mohammed, O. F. Successes and challenges of core/shell lead halide perovskite nanocrystals. ACS Energy Lett. 6, 1340–1357 (2021).

    Article  CAS  Google Scholar 

  8. Tian, J. et al. Inorganic halide perovskite solar cells: progress and challenges. Adv. Energy. Mater. 10, 2000183 (2020).

    Article  CAS  Google Scholar 

  9. Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rainò, G. et al. Ultra-narrow room-temperature emission from single CsPbBr3 perovskite quantum dots. Nat. Commun. 13, 2587 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Swarnkar, A. et al. Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92–95 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Malgras, V. et al. Observation of quantum confinement in monodisperse methylammonium lead halide perovskite nanocrystals embedded in mesoporous silica. J. Am. Chem. Soc. 138, 13874–13881 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Dirin, D. N. et al. Harnessing defect-tolerance at the nanoscale: highly luminescent lead halide perovskite nanocrystals in mesoporous silica matrixes. Nano Lett. 16, 5866–5874 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Iijima, S. & Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603–605 (1993).

    Article  CAS  Google Scholar 

  15. Yang, F. et al. Chirality pure carbon nanotubes: growth, sorting, and characterization. Chem. Rev. 120, 2693–2758 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Allard, C. et al. Advanced 1D heterostructures based on nanotube templates and molecules. Chem. Soc. Rev. 53, 8457–8512 (2024).

    Article  CAS  PubMed  Google Scholar 

  17. Cao, K. et al. Atomic mechanism of metal crystal nucleus formation in a single-walled carbon nanotube. Nat. Chem. 12, 921–928 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Senga, R. et al. Atomic structure and dynamic behaviour of truly one-dimensional ionic chains inside carbon nanotubes. Nat. Mater. 13, 1050–1054 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Nakanishi, Y. et al. Template synthesis of linear-chain nanodiamonds inside carbon nanotubes from bridgehead-halogenated diamantane precursors. Angew. Chem. Int. Ed. 54, 10802–10806 (2015).

    Article  CAS  Google Scholar 

  20. Shi, L. et al. Confined linear carbon chains as a route to bulk carbyne. Nat. Mater. 15, 634–639 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Pham, T. et al. Torsional instability in the single-chain limit of a transition metal trichalcogenide. Science 361, 263–266 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Gao, M. et al. Direct observation of transient structural dynamics of atomically thin halide perovskite nanowires. J. Am. Chem. Soc. 145, 4800–4807 (2023).

    Article  CAS  PubMed  Google Scholar 

  23. Kashtiban, R. J., Patrick, C. E., Ramasse, Q., Walton, R. I. & Sloan, J. Picoperovskites: the smallest conceivable isolated halide perovskite structures formed within carbon nanotubes. Adv. Mater. 35, e2208575 (2023).

    Article  PubMed  Google Scholar 

  24. Zhu, M. et al. Inner doping of carbon nanotubes with perovskites for ultralow power transistors. Adv. Mater. 36, 2403743 (2024).

    Article  CAS  Google Scholar 

  25. Teng, Y. et al. Interfacial electron transfer in PbI2@single-walled carbon nanotube van der Waals heterostructures for high-stability self-powered photodetectors. J. Am. Chem. Soc. 146, 6231–6239 (2024).

    Article  CAS  PubMed  Google Scholar 

  26. Jiang, Y. et al. Ultrasmall single-layered NbSe2 nanotubes flattened within a chemical-driven self-pressurized carbon nanotube. Nat. Commun. 15, 475 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Villalva, J. et al. Spin-state-dependent electrical conductivity in single-walled carbon nanotubes encapsulating spin-crossover molecules. Nat. Commun. 12, 1578 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Folgueras, M. C., Jiang, Y., Jin, J. & Yang, P. High-entropy halide perovskite single crystals stabilized by mild chemistry. Nature 621, 282–288 (2023).

    Article  CAS  PubMed  Google Scholar 

  29. Song, Y. et al. High-entropy design for 2D halide perovskite. J. Am. Chem. Soc. 146, 19748–19755 (2024).

    Article  CAS  PubMed  Google Scholar 

  30. Wang, X. et al. Unexpectedly high salt accumulation inside carbon nanotubes soaked in dilute salt solutions. Phys. Rev. Lett. 121, 226102 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Tunuguntla, R. H., Allen, F. I., Kim, K., Belliveau, A. & Noy, A. Ultrafast proton transport in sub-1-nm diameter carbon nanotube porins. Nat. Nanotechnol. 11, 639–644 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Tunuguntla, R. H. et al. Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins. Science 357, 792–796 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Cambre, S. et al. Asymmetric dyes align inside carbon nanotubes to yield a large nonlinear optical response. Nat. Nanotechnol. 10, 248–252 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Wen, L., Zhang, X., Tian, Y. & Jiang, L. Quantum-confined superfluid: from nature to artificial. Sci. China Mater. 61, 1027–1032 (2018).

    Article  CAS  Google Scholar 

  35. Xue, Y. H. et al. Atomic-scale ion transistor with ultrahigh diffusivity. Science 372, 501–503 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Shi, G. et al. Two-dimensional Na–Cl crystals of unconventional stoichiometries on graphene surface from dilute solution at ambient conditions. Nat. Chem. 10, 776–779 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Jordan, J. W. et al. Host–guest hybrid redox materials self-assembled from polyoxometalates and single-walled carbon nanotubes. Adv. Mater. 31, 1904182 (2019).

    Article  CAS  Google Scholar 

  38. Yang, X. et al. Host–guest molecular interaction enabled separation of large-diameter semiconducting single-walled carbon nanotubes. J. Am. Chem. Soc. 143, 10120–10130 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Zhao, X. et al. Sorting of cluster confined metallic single-walled carbon nanotubes for fabricating atomically vacant uranium oxide. J. Am. Chem. Soc. 145, 25242–25251 (2023).

    Article  CAS  PubMed  Google Scholar 

  40. Wang, K. et al. Advances in liquid-phase assembly of cluster into single-walled carbon nanotubes. ACS Appl. Mater. Interfaces 16, 51826–51836 (2024).

    Article  CAS  PubMed  Google Scholar 

  41. Zhao, J., Han, J. & Lu, J. P. Work functions of pristine and alkali-metal intercalated carbon nanotubes and bundles. Phys. Rev. B 65, 193401 (2002).

    Article  Google Scholar 

  42. Rao, A. M., Eklund, P. C., Bandow, S., Thess, A. & Smalley, R. E. Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering. Nature 388, 257–259 (1997).

    Article  CAS  Google Scholar 

  43. Seo, D. et al. One-dimensional gold nanostructures through directed anisotropic overgrowth from gold decahedrons. J. Phys. Chem. C 113, 3449–3454 (2009).

    Article  CAS  Google Scholar 

  44. Straus, D. B., Guo, S. & Cava, R. J. Kinetically stable single crystals of perovskite-phase CsPbI3. J. Am. Chem. Soc. 141, 11435–11439 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Lin, H. et al. Epitaxial growth of lead-free double perovskite shell for CsPbX3/Cs2SnX6 (X = Cl, Br, and I) core/shell perovskite nanocrystals with enhanced photoelectric properties and stability. Adv. Funct. Mater. 34, 2309480 (2023).

    Article  Google Scholar 

  46. Zhan, C. et al. Subnanometer high-entropy alloy nanowires enable remarkable hydrogen oxidation catalysis. Nat. Commun. 12, 6261 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yang, S. et al. Highly circularly polarized light-sensitive chiral one-dimensional perovskites enabled by antisolvent engineering. Adv. Funct. Mater. 34, 2310917 (2024).

    Article  CAS  Google Scholar 

  48. Xu, Y. et al. Tailoring multi-phenyl ring cation for stable scalable hybrid bismuth iodide amorphous film: enabling record sensitivity and high-performance X-ray array imaging. Adv. Mater. 36, 2406128 (2024).

    Article  CAS  Google Scholar 

  49. Clairand, I. et al. Use of active personal dosemeters in interventional radiology and cardiology: tests in laboratory conditions and recommendations—ORAMED project. Radiat. Meas. 46, 1252–1257 (2011).

    Article  CAS  Google Scholar 

  50. Otsuka, K., Inoue, T., Chiashi, S. & Maruyama, S. Selective removal of metallic single-walled carbon nanotubes in full length by organic film-assisted electrical breakdown. Nanoscale 6, 8831–8835 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Zhan, P. et al. Research progress of one-dimensional van der Waals atomic chain materials. Sci. China Mater. 68, 364–386 (2025).

    Article  Google Scholar 

  52. Hunter, D. M., Belev, G., Kasap, S. & Yaffe, M. J. Measured and calculated K-fluorescence effects on the MTF of an amorphous-selenium based CCD X-ray detector. Med. Phys. 39, 608–622 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Thirimanne, H. M. et al. Hybrid multipixel array X-ray detectors for real-time direct detection of hard X-rays. IEEE Trans. Nucl. Sci. 67, 2238–2245 (2020).

    Article  CAS  Google Scholar 

  54. Schieber, M., Zuck, A., Gilboa, H. & Zentai, G. Reviewing polycrystalline mercuric iodide X-ray detectors. IEEE Trans. Nucl. Sci. 53, 2385–2391 (2006).

    Article  CAS  Google Scholar 

  55. Achmadullin, R. A. et al. Photovoltaic X-ray detectors based on epitaxial GaAs structures. Nucl. Instrum. Methods Phys. Res. A 554, 314–319 (2005).

    Article  CAS  Google Scholar 

  56. Tokuda, S., Kishihara, H., Adachi, S. & Sato, T. Preparation and characterization of polycrystalline CdZnTe films for large-area, high-sensitivity X-ray detectors. J. Mater. Sci. Mater. Electron. 15, 1–8 (2004).

    Article  CAS  Google Scholar 

  57. Huang, W. C., Tseng, Z. C., Hsueh, W. J., Liao, S. Y. & Huang, C. Y. X-ray detectors based on amorphous InGaZnO thin films. IEEE Trans. Electron Dev. 70, 3690–3694 (2023).

    Article  CAS  Google Scholar 

  58. Liang, H. L. et al. Flexible X-ray detectors based on amorphous Ga2O3 thin films. ACS Photonics 6, 351–359 (2019).

    Article  CAS  Google Scholar 

  59. Hua, Y. et al. Suppressed ion migration for high-performance X-ray detectors based on atmosphere-controlled EFG-grown perovskite CsPbBr3 single crystals. Nat. Photon. 18, 870–877 (2024).

    Article  CAS  Google Scholar 

  60. Du, X. et al. Chemical potential diagram guided rational tuning of electrical properties: a case study of CsPbBr3 for X-ray detection. Adv. Mater. 34, 2110252 (2022).

    Article  CAS  Google Scholar 

  61. Li, W. et al. Evaporated perovskite thick junctions for X-ray detection. ACS Appl. Mater. Interfaces 13, 2971–2978 (2021).

    Article  CAS  PubMed  Google Scholar 

  62. Zhao, J. J. et al. Perovskite-filled membranes for flexible and large-area direct-conversion X-ray detector arrays. Nat. Photon. 14, 612–617 (2020).

    Article  Google Scholar 

  63. Liu, L. et al. Anti-perovskites with long carrier lifetime for ultralow dose and stable X-ray detection. Nat. Photon. 18, 990–997 (2024).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Z. W. Quan and Y. Wei for valuable discussions and the Core Research Facilities of SUSTech for characterization. F.Y. acknowledges support from the National Natural Science Foundation of China (NSFC) (22222504, 22475093, 92161124, 92461307), the National Key Research and Development Program of China (2021YFA0717400), the Shenzhen Basic Research Project (JCYJ20210324104808022), the State Key Laboratory of Advanced Fiber Materials (Donghua University) (KF2504) and the Guangdong Pearl River Talent Plan (2021QN02C104). Y.L. acknowledges support from the NSFC (52203342, 62304236), the National Key Research and Development Program of China (2024YFF0507802), the Shenzhen Basic Research Project (JCYJ20240813155804007), the Young Elite Scientist Sponsorship Program by Cast of China Association for Science and Technology (YESS20210285) and the Guangdong Pearl River Talent Plan (2021QN02Y300). DFT calculations were performed with the CHEM high-performance supercomputer cluster (CHEM-HPC) located at Department of Chemistry, SUSTech.

Author information

Authors and Affiliations

Contributions

F.Y. conceived the project. F.Y. and Y.L. co-supervised the project and led the collaboration efforts. M.S. performed material synthesis. M.S., K.W., Y.J., G.J., X.Z. and B.Y. performed the characterizations. B.L. performed theoretical calculations. B.Z. and Y.L. contributed to the devices. F.Y., M.S., Y.L. and B.Z. wrote and revised the manuscript. All authors analysed the data, discussed the results and approved the manuscript.

Corresponding authors

Correspondence to Yunlong Li or Feng Yang.

Ethics declarations

Competing interests

F.Y. and M.S. declare a financial interest: a patent related to this research has been submitted. The remaining authors declare no competing financial interests.

Peer review

Peer review information

Nature Synthesis thanks Paul Sellin and Jeremy Sloan for their contribution to the peer review of this work. Primary Handling Editor: Alexandra Groves, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Evidence of negatively charged SWCNT after filling perovskite.

a, Density of states of CsPbI3@(20,0)-SWCNT and projected density of states of (20,0)-SWCNT and [Cs4PbI5]. Fermi levels of CsPbI3@(20,0)-SWCNT and empty (20,0)-SWCNT are labelled, which is calculated by HSE06 functional. b, Raman spectra showing G band of CsPbI3@SWCNT and empty-SWCNT. Excitation wavelength: 532 nm.

Source data

Extended Data Fig. 2 Resistance of devices measured in the dark condition.

a, Senary Cs3MCl6@SWCNT. b, CsPbBr3@SWCNT. c, CsPbI3@SWCNT.

Source data

Extended Data Fig. 3 Bias-dependent photocurrent of senary Cs3MCl6@SWCNT device.

A modified Hecht equation is used to fit the obtained photoconductivity curve by the equation: \(I=\frac{{I}_{0}\mu \tau V}{{L}^{2}}[1-\exp (-\frac{{L}^{2}}{\mu \tau V})]\) where I0 is the saturated photoinduced signal current, V is the applied bias, and L is the thickness of the sample.

Source data

Extended Data Fig. 4 Photocurrent and dark current drift.

I-t curves of senary Cs3MCl6@SWCNT device in the dark and irradiation conditions with a bias of 200 V.

Source data

Extended Data Fig. 5 Ion-migration activation energy.

a, Senary Cs3MCl6@SWCNT. b, CsPbBr3@SWCNT. c, CsPbI3@SWCNT.

Source data

Extended Data Fig. 6 LoD evaluation.

a, I-t curves of senary Cs3MCl6@SWCNT device under a pulsing X-ray irradiation with different dose rates. b, X-ray dose rate dependent signal-to-noise ratio for LoD evaluation.

Source data

Extended Data Fig. 7 Statistic box showing the reproducibility of senary Cs3MCl6@SWCNT devices.

a, Sensitivities obtained at 50–200 V biases. b, LoD obtained at 200 V bias. c, Dark current drift obtained at 200 V bias. d, Dark current obtained at the 200 V bias. The data in (ad) are collected from 6 different devices (n = 6) fabricated by the same materials and procedures. The upper line of the whisker represents the maximum value of the group of data, the lower line of the whisker represents the minimum value of the group of data, the upper edge of the box is the 75% quantile of the group of data, the lower edge of the box is the 25% quantile of the group of data, the middle line of the box is the median of the group of data, the curve is the average normal distribution of the group of data, and the white square in the centre of the box represents the mean of the group of the data.

Source data

Extended Data Fig. 8 Long-term storage stability of the senary Cs3MCl6@SWCNT device.

Normalized current-time curves when exposing the device to ambient air for 91 days.

Source data

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–26, Tables 1–10, References 1–17 and caption for Supplementary Video 1.

Reporting Summary

Supplementary Video 1

A real-time movie of molecular dynamic simulations showing the diffusion behaviours of DMSO and cyclohexane molecules inside a (18,0) SWCNT with a diameter of 14.2 Å in 100 ns. Frame rate of video: 30 frame·s–1.

Source data

Source Data Fig. 1

Statistical Source Data.

Source Data Fig. 3

Statistical Source Data.

Source Data Fig. 4

MD Simulation Source Data.

Source Data Fig. 5

XPS Source Data.

Source Data Fig. 6

Statistical Source Data.

Source Data Extended Data Fig. 1

Raman Source Data.

Source Data Extended Data Fig. 2

Device Source Data.

Source Data Extended Data Fig. 3

Device Source Data.

Source Data Extended Data Fig. 4

Device Source Data.

Source Data Extended Data Fig. 5

Device Source Data.

Source Data Extended Data Fig. 6

Device Source Data.

Source Data Extended Data Fig. 7

Device Source Data.

Source Data Extended Data Fig. 8

Device Source Data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, M., Zhao, B., Li, B. et al. Synthesis of single-unit-cell-thick perovskites by liquid-phase confined assembly for high-performance ultrastable X-ray detectors. Nat. Synth (2025). https://doi.org/10.1038/s44160-025-00785-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44160-025-00785-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing