Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stereoconvergent reduction of alkenes using a repurposed iron-based dioxygenase

Abstract

The stereoconvergent reduction of alkenes for efficient synthesis of chiral compounds is a challenge in synthetic chemistry, even for exquisite enzymes in nature. Natural ene-reductases for example generally catalyse the reduction of alkenes in an enantiodivergent or resolution fashion. Here we report the repurposing of non-haem iron-based dioxygenases to catalyse the stereoconvergent reduction of alkenes through an iron hydride intermediate, by introducing silanes to the biocatalytic system. Directed evolution of gentisate 1,2-dioxygenase led to iron-based ene-reductases with high efficiency (up to 99% yield), excellent enantioselectivity (23 examples with >99% e.e.) and compatibility with a structurally diverse range of substrates. Experimental studies suggest the formation of iron hydride species in the enzyme and support the divalency of iron during the catalytic process. Computational studies show that the reaction is energetically feasible through an iron hydride mechanism and reveal the molecular mechanism of stereoconvergence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Enzymatic reduction of an E/Z mixture of alkene.
Fig. 2: Discovery and directed evolution of non-haem iron enzymes for stereoconvergent alkene reduction.
Fig. 3: Substrate scope study results.
Fig. 4: Mechanistic experiments.
Fig. 5: Computational studies.

Similar content being viewed by others

Data availability

All of the data needed to support the conclusions of this study are available in the main text and Supplementary Information.

References

  1. Wu, S., Zhou, Y. & Li, Z. Biocatalytic selective functionalisation of alkenes via single-step and one-pot multi-step reactions. Chem. Commun. 55, 883–896 (2019).

    Article  CAS  Google Scholar 

  2. Knowles, W. S. Asymmetric hydrogenations (Nobel lecture). Angew. Chem. Int. Ed. 41, 1998–2007 (2002).

    Article  CAS  Google Scholar 

  3. Noyori, R. Asymmetric catalysis: science and opportunities (Nobel lecture). Angew. Chem. Int. Ed. 41, 2008–2022 (2002).

    Article  CAS  Google Scholar 

  4. Massaro, L., Zheng, J., Margarita, C. & Andersson, P. G. Enantioconvergent and enantiodivergent catalytic hydrogenation of isomeric olefins. Chem. Soc. Rev. 49, 2504–2522 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Winkler, C. K., Faber, K. & Hall, M. Biocatalytic reduction of activated CC-bonds and beyond: emerging trends. Curr. Opin. Chem. Biol. 43, 97–105 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Hollmann, F., Opperman, D. J. & Paul, C. E. Biocatalytic reduction reactions from a chemist’s perspective. Angew. Chem. Int. Ed. 60, 5644–5665 (2021).

    Article  CAS  Google Scholar 

  7. Mansell, D. J. et al. Biocatalytic asymmetric alkene reduction: crystal structure and characterization of a double bond reductase from Nicotiana tabacum. ACS Catal. 3, 370–379 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Turrini, N. G. et al. Biocatalytic access to nonracemic γ-oxo esters via stereoselective reduction using ene-reductases. Green Chem. 19, 511–518 (2017).

    Article  CAS  Google Scholar 

  9. Durchschein, K. et al. Nicotinamide-dependent ene reductases as alternative biocatalysts for the reduction of activated alkenes. Eur. J. Org. Chem. 2012, 4963–4968 (2012).

    Article  CAS  Google Scholar 

  10. Mueller, N. J. et al. The substrate spectra of pentaerythritol tetranitrate reductase, morphinone reductase, N-ethylmaleimide reductase and estrogen-binding protein in the asymmetric bioreduction of activated alkenes. Adv. Synth. Catal. 352, 387–394 (2010).

    Article  CAS  Google Scholar 

  11. Winkler, C. K., Tasnádi, G., Clay, D., Hall, M. & Faber, K. Asymmetric bioreduction of activated alkenes to industrially relevant optically active compounds. J. Biotechnol. 162, 381–389 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Litman, Z. C., Wang, Y., Zhao, H. & Hartwig, J. F. Cooperative asymmetric reactions combining photocatalysis and enzymatic catalysis. Nature 560, 355–359 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Wang, Y., Huang, X., Hui, J., Vo, L. T. & Zhao, H. Stereoconvergent reduction of activated alkenes by a nicotinamide free synergistic photobiocatalytic system. ACS Catal. 10, 9431–9437 (2020).

    Article  CAS  Google Scholar 

  14. Romero, E. O. et al. Enabling broader adoption of biocatalysis in organic chemistry. JACS Au 3, 2073–2085 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Arnold, F. H. Directed evolution: bringing new chemistry to life. Angew. Chem. Int. Ed. 57, 4143–4148 (2018).

    Article  CAS  Google Scholar 

  16. Chen, K. & Arnold, F. H. Engineering new catalytic activities in enzymes. Nat. Catal. 3, 203–213 (2020).

    Article  CAS  Google Scholar 

  17. Goldberg, N. W., Knight, A. M., Zhang, R. K. & Arnold, F. H. Nitrene transfer catalyzed by a non-heme iron enzyme and enhanced by non-native small-molecule ligands. J. Am. Chem. Soc. 141, 19585–19588 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vila, M. A., Steck, V., Rodriguez Giordano, S., Carrera, I. & Fasan, R. C–H amination via nitrene transfer catalyzed by mononuclear non-heme iron-dependent enzymes. ChemBioChem 21, 1981–1987 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Yang, Y. & Arnold, F. H. Navigating the unnatural reaction space: directed evolution of heme proteins for selective carbene and nitrene transfer. Acc. Chem. Res. 54, 1209–1225 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang, J. et al. Chemodivergent C(sp3)–H and C(sp2)–H cyanomethylation using engineered carbene transferases. Nat. Catal. 6, 152–160 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mao, R. et al. Biocatalytic, stereoconvergent alkylation of (Z/E)-trisubstituted silyl enol ethers. Nat. Synth. 3, 256–264 (2024).

    Article  CAS  PubMed  Google Scholar 

  22. Huang, X. et al. Photoenzymatic enantioselective intermolecular radical hydroalkylation. Nature 584, 69–74 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Sandoval, B. A. et al. Photoenzymatic reductions enabled by direct excitation of flavin-dependent “ene”-reductases. J. Am. Chem. Soc. 143, 1735–1739 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Huang, X. et al. Photoinduced chemomimetic biocatalysis for enantioselective intermolecular radical conjugate addition. Nat. Catal. 5, 586–593 (2022).

    Article  CAS  Google Scholar 

  25. Cheng, L. et al. Stereoselective amino acid synthesis by synergistic photoredox-pyridoxal radical biocatalysis. Science 381, 444–451 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fu, H. & Hyster, T. K. From ground-state to excited-state activation modes: flavin-dependent “ene“-reductases catalyzed non-natural radical reactions. Acc. Chem. Res. 57, 1446–1457 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu, Y. et al. A light-driven enzymatic enantioselective radical acylation. Nature 625, 74–78 (2024).

    Article  CAS  PubMed  Google Scholar 

  28. Zhou, Q., Chin, M., Fu, Y., Liu, P. & Yang, Y. Stereodivergent atom-transfer radical cyclization by engineered cytochromes P450. Science 374, 1612–1616 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rui, J. et al. Directed evolution of nonheme iron enzymes to access abiological radical-relay C(sp3)−H azidation. Science 376, 869–874 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fu, W. et al. Enzyme-controlled stereoselective radical cyclization to arenes enabled by metalloredox biocatalysis. Nat. Catal. 6, 628–636 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang, B. et al. Repurposing iron- and 2-oxoglutarate-dependent oxygenases to catalyze olefin hydration. Angew. Chem. Int. Ed. 62, e202311099 (2023).

    Article  CAS  Google Scholar 

  32. Zhao, Q. et al. Engineering non-haem iron enzymes for enantioselective C(sp3)–F bond formation via radical fluorine transfer. Nat. Synth. 3, 958–966 (2024).

    Article  CAS  PubMed  Google Scholar 

  33. Van Stappen, C. et al. Designing artificial metalloenzymes by tuning of the environment beyond the primary coordination sphere. Chem. Rev. 122, 11974–12045 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Schwizer, F. et al. Artificial metalloenzymes: reaction scope and optimization strategies. Chem. Rev. 118, 142–231 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Ji, P., Park, J., Gu, Y., Clark, D. S. & Hartwig, J. F. Abiotic reduction of ketones with silanes catalysed by carbonic anhydrase through an enzymatic zinc hydride. Nat. Chem. 13, 312–318 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen, R., Kayrouz, C. S., McAmis, E., Clark, D. S. & Hartwig, J. F. Carbonic anhydrase variants catalyze the reduction of dialkyl ketones with high enantioselectivity. Angew. Chem. Int. Ed. 63, e202407111 (2024).

    Article  CAS  Google Scholar 

  37. Chen, D. et al. An evolved artificial radical cyclase enables the construction of bicyclic terpenoid scaffolds via an H-atom transfer pathway. Nat. Chem. 16, 1656–1664 (2024).

    Article  CAS  PubMed  Google Scholar 

  38. Waldron, K. J., Rutherford, J. C., Ford, D. & Robinson, N. J. Metalloproteins and metal sensing. Nature 460, 823–830 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, X. et al. Repurposing myoglobin into an abiological asymmetric ketoreductase. Chem 10, 2577–2589 (2024).

    Article  CAS  Google Scholar 

  40. Nakashima, Y. et al. Structure function and engineering of multifunctional non-heme iron dependent oxygenases in fungal meroterpenoid biosynthesis. Nat. Commun. 9, 104 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Neugebauer, M. E. et al. Reaction pathway engineering converts a radical hydroxylase into a halogenase. Nat. Chem. Biol. 18, 171–179 (2022).

    Article  CAS  PubMed  Google Scholar 

  42. He, J.-B. et al. Enzymatic catalysis favours eight-membered over five-membered ring closure in bicyclomycin biosynthesis. Nat. Catal. 6, 637–648 (2023).

    Article  CAS  Google Scholar 

  43. Ushimaru, R. & Abe, I. Unusual dioxygen-dependent reactions catalyzed by nonheme iron enzymes in natural product biosynthesis. ACS Catal. 13, 1045–1076 (2023).

    Article  CAS  Google Scholar 

  44. Zhang, J., Wu, P., Zhang, X. & Wang, B. Coordination dynamics of iron is a key player in the catalysis of non-heme enzymes. ChemBioChem 24, e202300119 (2023).

    Article  CAS  PubMed  Google Scholar 

  45. McBride, M. J. et al. A peroxodiiron(iii/iii) intermediate mediating both N-hydroxylation steps in biosynthesis of the N-nitrosourea pharmacophore of streptozotocin by the multi-___domain metalloenzyme SznF. J. Am. Chem. Soc. 142, 11818–11828 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang, C. et al. Evidence that the fosfomycin-producing epoxidase, HppE, is a non-heme-iron peroxidase. Science 342, 991–995 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wei, D. & Darcel, C. Iron catalysis in reduction and hydrometalation reactions. Chem. Rev. 119, 2550–2610 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Wen, J., Wang, F. & Zhang, X. Asymmetric hydrogenation catalyzed by first-row transition metal complexes. Chem. Soc. Rev. 50, 3211–3237 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Hu, M.-Y. et al. Ligands with 1,10-phenanthroline scaffold for highly regioselective iron-catalyzed alkene hydrosilylation. Nat. Commun. 9, 221 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hou, X. et al. Discovery of the biosynthetic pathway of beticolin 1 reveals a novel non-heme iron-dependent oxygenase for anthraquinone ring cleavage. Angew. Chem. Int. Ed. 61, e202208772 (2022).

    Article  CAS  Google Scholar 

  51. Meah, Y. & Massey, V. Old yellow enzyme: stepwise reduction of nitro-olefins and catalysis of aci-nitro tautomerization. Proc. Natl Acad. Sci. USA 97, 10733–10738 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Toogood, H. S. et al. A site-saturated mutagenesis study of pentaerythritol tetranitrate reductase reveals that residues 181 and 184 influence ligand binding, stereochemistry and reactivity. ChemBioChem 12, 738–749 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Lonsdale, R. & Reetz, M. T. Reduction of α,β-unsaturated ketones by old yellow enzymes: mechanistic insights from quantum mechanics/molecular mechanics calculations. J. Am. Chem. Soc. 137, 14733–14742 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Devine, P. N. et al. Extending the application of biocatalysis to meet the challenges of drug development. Nat. Rev. Chem. 2, 409–421 (2018).

    Article  Google Scholar 

  55. Thiyagarajan, S., Diskin-Posner, Y., Montag, M. & Milstein, D. Manganese-catalyzed base-free addition of saturated nitriles to unsaturated nitriles by template catalysis. Chem. Sci. 15, 2571–2577 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Harpel, M. R. & Lipscomb, J. D. Gentisate 1,2-dioxygenase from Pseudomonas. Purification, characterization, and comparison of the enzymes from Pseudomonas testosteroni and Pseudomonas acidovorans. J. Biol. Chem. 265, 6301–6311 (1990).

    Article  CAS  PubMed  Google Scholar 

  57. Linford-Wood, T. G., Mahon, M. F., Grayson, M. N. & Webster, R. L. Iron-catalyzed H/D exchange of primary silanes, secondary silanes, and tertiary siloxanes. ACS Catal. 12, 2979–2985 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Trott, O. & Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comput. Chem. 31, 455–461 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Case, D. A. et al. AMBER 2018 (Univ. California, San Francisco, 2018).

  60. Wang, J. M., Wolf, R. M., Caldwell, J. W., Kollman, P. A. & Case, D. A. Development and testing of a general amber force field. J. Comput. Chem. 25, 1157–1174 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Bayly, C. I., Cieplak, P., Cornell, W. D. & Kollman, P. A. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J. Phys. Chem. 97, 10269–10280 (1993).

    Article  CAS  Google Scholar 

  62. Li, P. & Merz, K. M. Jr. MCPB.py: a Python based metal center parameter builder. J. Chem. Inf. Model. 56, 599–604 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. Maier, J. A. et al. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 11, 3696–3713 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sherwood, P. et al. QUASI: a general purpose implementation of the QM/MM approach and its application to problems in catalysis. J. Mol. Struct. THEOCHEM 632, 1–28 (2003).

    Article  CAS  Google Scholar 

  65. Kaestner, J. et al. DL-FIND: an open-source geometry optimizer for atomistic simulations. J. Phys. Chem. A 113, 11856–11865 (2009).

    Article  Google Scholar 

  66. Ahlrichs, R., Bar, M., Haser, M., Horn, H. & Kolmel, C. Electronic structure calculations on workstation computers: the program system turbomole. Chem. Phys. Lett. 162, 165–169 (1989).

    Article  CAS  Google Scholar 

  67. Balasubramani, S. G. et al. TURBOMOLE: modular program suite for ab initio quantum-chemical and condensed-matter simulations. J. Chem. Phys. 152, 184107 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098–3100 (1988).

    Article  CAS  Google Scholar 

  69. Lee, C., Yang, W. & Parr, R. G. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).

    Article  CAS  Google Scholar 

  70. Becke, A. D. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article  CAS  Google Scholar 

  71. Stephens, P. J., Devlin, F. J., Chabalowski, C. F. & Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98, 11623–11627 (1994).

    Article  CAS  Google Scholar 

  72. Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Grimme, S. Accurate description of van der Waals complexes by density functional theory including empirical corrections. J. Comput. Chem. 25, 1463–1473 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  PubMed  Google Scholar 

  75. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank staff at the Chemistry Instrumentation Center of Zhejiang University for instrumental support, including Q. He and X. Li for help with high-resolution mass spectrometry, X. Wang and Y. Wang for EPR analysis and M. Yu for assistance with NMR. We thank B. Shan’s group at Zhejiang University for help with obtaining ultraviolet–visible spectroscopy data. We further acknowledge Y. Rao’s group at Jiangnan University for providing plasmid DNA coding for BTG13. This work was supported by the National Natural Science Foundation of China (22172142 (P.J.), 22377107 (P.J.) and 22303043 (X.Z.)), the Zhejiang Provincial Outstanding Youth Science Foundation (LR22B030004 (P.J.)), Fundamental Research Funds for the Central Universities (226-2024-00003 (P.J.)), the Key-Area Research and Development Program of Guangdong Province (2022B1111080005 (R.W.)), the Ningbo Yongjiang Talent Programme (2023A-378-G (X.Z.)), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB0960201 (L.Y.)) and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (2022455 (L.Y.)).

Author information

Authors and Affiliations

Contributions

P.J. and Z.W. initiated this project. Z.W. developed the biocatalytic system and performed most of the experiments. H.Z., Z.F. and W.W. assisted with the synthesis of compounds. L.Y. carried out the spectroscopic studies. Y.S. assisted with protein expression and purification. X.Z. and Z.X. performed the computational studies with R.W. providing guidance. Z.W., X.Z. and P.J. wrote the manuscript. All authors reviewed and approved the manuscript.

Corresponding authors

Correspondence to Ruibo Wu or Pengfei Ji.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Hans Senn and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–26, Tables 1–22, Experimental details and Characterization data.

Reporting Summary

Supplementary Data

Primer sequences for site-specific mutagenesis.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, Z., Zhang, X., Zhuang, H. et al. Stereoconvergent reduction of alkenes using a repurposed iron-based dioxygenase. Nat. Synth (2025). https://doi.org/10.1038/s44160-025-00788-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44160-025-00788-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing