Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A crystalline dithorium complex with a Th–Th bond

Abstract

Theoretical studies predict that homoatomic metal–metal bonds of f-block actinide elements should be ubiquitous. Surprisingly, however, the isolation and characterization of compounds featuring an actinide–actinide bond has proven challenging and the field remains undeveloped. Here we report a well-defined thorium dimer featuring a Th–Th two-centre one-electron (2c-1e) σ bond and a 2c-1e π bond. This thorium dimer was synthesized by reducing a Th(IV) chloride complex with potassium metal in tetrahydrofuran. Magnetic measurements indicate that this thorium dimer features exceedingly strong antiferromagnetic coupling between the two formal Th(III) centres with a coupling constant J ≤ −1,200 cm−1 such that the Th–Th interaction has covalent bond character. Detailed computational investigations further support the existence of the Th–Th bond in this molecule. These results demonstrate that diactinide complexes with actinide–actinide bonds are accessible but require an appropriate ligand framework to stabilize low-valent actinide centres.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthesis and reactivity of complex 2.
Fig. 2: Molecular structures of complex 2.
Fig. 3: Magnetometric measurements and energy scheme for two doublet Th(III) centres.
Fig. 4: Theoretical study of complex 2.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request. The X-ray crystallographic coordinates for structures reported in this study have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition numbers CCDC 2182247 (2) and 2182248 (3). These CCDC data can be obtained free of charge via the CCDC at www.ccdc.cam.ac.uk/data_request/cif.

References

  1. Cotton, F. A., Murillo, C. A. & Walton, R. A. Multiple Bonds Between Metal Atoms (Springer, 2005).

  2. Liddle, S. T. Molecular Metal–Metal Bonds: Compounds, Synthesis, Properties (Wiley, 2015).

  3. Green, S. P., Jones, C. & Stasch, A. Stable magnesium(I) compounds with Mg–Mg bonds. Science 318, 1754–1757 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Hill, M. S., Hitchcock, P. B. & Pongtavornpinyo, R. A linear homocatenated compound containing six indium centers. Science 311, 1904–1907 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Tokitoh, N., Arai, Y., Okazaki, R. & Nagase, S. Synthesis and characterization of a stable dibismuthene: evidence for a Bi–Bi double bond. Science 277, 78–80 (1997).

    Article  CAS  Google Scholar 

  6. Su, J., Li, X. W., Crittendon, R. C. & Robinson, G. H. How short is a -Ga=Ga- triple bond? Synthesis and molecular structure of Na2[Mes*2C6H3-Ga=Ga-C6H3Mes*2] (Mes* = 2,4,6-i-Pr3C6H2): the first gallyne. J. Am. Chem. Soc. 119, 5471–5472 (1997).

  7. Peng, Y., Ellis, B. D., Wang, X., Fettinger, J. C. & Power, P. P. Reversible reactions of ethylene with distannynes under ambient conditions. Science 325, 1668–1670 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Cotton, F. A. et al. Mononuclear and polynuclear chemistry of rhenium (III): Its pronounced homophilicity. Science 145, 1305–1307 (1964).

    Article  CAS  PubMed  Google Scholar 

  9. Kundig, E. P., Moskovits, M. & Ozin, G. A. Matrix synthesis and characterization of dichromium. Nature 254, 503–504 (1975).

    Article  Google Scholar 

  10. Resa, I., Carmona, E., Gutierrez-Puebla, E. & Monge, A. Decamethyldizincocene, a stable compound of Zn(I) with a Zn–Zn bond. Science 305, 1136–1138 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Nguyen, T. et al. Synthesis of a stable compound with fivefold bonding between two chromium(I) centers. Science 310, 844–847 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Gould, C. A. et al. Ultrahard magnetism from mixed-valence dilanthanide complexes with metal–metal bonding. Science 375, 198–202 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Gagliardi, L. & Pyykkö, P. Theoretical search for very short metal–actinide bonds: NUIr and isoelectronic systems. Angew. Chem. Int. Ed. 43, 1573–1576 (2004).

    Article  CAS  Google Scholar 

  14. Gagliardi, L. & Roos, B. O. Quantum chemical calculations show that the uranium molecule U2 has a quintuple bond. Nature 433, 848–851 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Gagliardi, L., Pyykkö, P. & Roos, B. O. A very short uranium–uranium bond: the predicted metastable U22+. Phys. Chem. Chem. Phys. 7, 2415–2417 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Straka, M. & Pyykkö, P. Linear HThThH: a candidate for a Th–Th triple bond. J. Am. Chem. Soc. 127, 13090–13091 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Roos, B. O. & Gagliardi, L. Quantum chemistry predicts multiply bonded diuranium compounds to be stable. Inorg. Chem. 45, 803–807 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. La Macchia, G., Brynda, M. & Gagliardi, L. Quantum chemical calculations predict the diphenyl diuranium compound [PhUUPh] to have a stable 1Ag ground state. Angew. Chem. Int. Ed. 45, 6210–6213 (2006).

    Article  Google Scholar 

  19. Roos, B. O., Malmqvist, P. Å. & Gagliardi, L. Exploring the actinide–actinide bond: theoretical studies of the chemical bond in Ac2, Th2, Pa2, and U2. J. Am. Chem. Soc. 128, 17000–17006 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Wang, C. Z. et al. Actinide (An = Th-Pu) dimetallocenes: promising candidates for metal–metal multiple bonds. Dalton Trans. 44, 17045–17053 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Hu, H. S. & Kaltsoyannis, N. The shortest Th–Th distance from a new type of quadruple bond. Phys. Chem. Chem. Phys. 19, 5070–5076 (2017).

    Article  PubMed  Google Scholar 

  22. Knecht, S., Jensen, H. J. A. & Saue, T. Relativistic quantum chemical calculations show that the uranium molecule U2 has a quadruple bond. Nat. Chem. 11, 40–44 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Ciborowski, S. M. et al. Metal–metal bonding in actinide dimers: U2 and U2. J. Am. Chem. Soc. 143, 17023–17028 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Steimle, T., Kokkin, D. L., Muscarella, S. & Ma, T. Detection of the thorium dimer via two-dimensional fluorescence spectroscopy. J. Phys. Chem. A 119, 9281–9285 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Souter, P. F., Kushto, G. P. & Andrews, L. IR spectra of uranium hydride molecules isolated in solid argon. Chem. Commun. 21, 2401–2402 (1996).

    Article  Google Scholar 

  26. Zhang, X. et al. U2@Ih(7)-C80: crystallographic characterization of a long-sought dimetallic actinide endohedral fullerene. J. Am. Chem. Soc. 140, 3907–3910 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Yan, Y. et al. Actinide–lanthanide single electron metal–metal bond formed in mixed-valence di-metallofullerenes. Nat. Commun. 14, 6637 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Zhuang, J. et al. Characterization of a strong covalent Th3+–Th3+ bond inside an Ih(7)-C80 fullerene cage. Nat. Commun. 12, 2372 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Sternal, R. S., Brock, C. P. & Marks, T. J. Metal–metal bonds involving actinides. synthesis and characterization of a complex having an unsupported actinide to transition metal bond. J. Am. Chem. Soc. 107, 8270–8272 (1985).

    Article  CAS  Google Scholar 

  30. Napoline, J. W. et al. Tris(phosphinoamide)-supported uranium–cobalt heterobimetallic complexes featuring Co→U dative interactions. Inorg. Chem. 52, 12170–12177 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Ward, A. L., Lukens, W. W., Lu, C. C. & Arnold, J. Photochemical route to actinide–transition metal bonds: synthesis, characterization and reactivity of a series of thorium and uranium heterobimetallic complexes. J. Am. Chem. Soc. 136, 3647–3654 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Hlina, J. A., Pankhurst, J. R., Kaltsoyannis, N. & Arnold, P. L. Metal–metal bonding in uranium-group 10 complexes. J. Am. Chem. Soc. 138, 3333–3345 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Chi, C. et al. Preparation and characterization of uranium–iron triple‐bonded \({{\rm{UFe}}({\rm{CO}})}_{3}^{-}\) and \({{\rm{UFe}}({\rm{CO}})}_{3}^{-}\) complexes. Angew. Chem. Int. Ed. 56, 6932–6936 (2017).

    Article  CAS  Google Scholar 

  34. Lu, E., Wooles, A. J., Gregson, M., Cobb, P. J. & Liddle, S. T. A very short uranium(IV)–rhodium(I) bond with net double-dative bonding character. Angew. Chem. Int. Ed. 57, 6587–6591 (2018).

    Article  CAS  Google Scholar 

  35. Feng, G. et al. Transition-metal-bridged bimetallic clusters with multiple uranium–metal bonds. Nat. Chem. 11, 248–253 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Feng, G. et al. Identification of a uranium–rhodium triple bond in a heterometallic cluster. Proc. Natl Acad. Sci. USA 116, 17654–17658 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Xin, X. et al. Dinitrogen cleavage by a heterometallic cluster featuring multiple uranium–rhodium bonds. J. Am. Chem. Soc. 142, 15004–15011 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Feng, G., McCabe, K. N., Wang, S., Maron, L. & Zhu, C. Construction of heterometallic clusters with multiple uranium–metal bonds by dianionic nitrogen–phosphorus ligands. Chem. Sci. 11, 7585–7592 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Wang, P. et al. Selective hydroboration of terminal alkynes catalyzed by heterometallic clusters with uranium–metal triple bonds. Chem 8, 1361–1375 (2022).

    Article  CAS  Google Scholar 

  40. Shen, J. et al. Complexes featuring a cis-[MUM] core (M = Rh, Ir): a new route to uranium–metal multiple bonds. Angew. Chem. Int. Ed. 62, e202303379 (2023).

    Article  CAS  Google Scholar 

  41. Fang, W. et al. Oxidative addition of E–H (E = C, N) bonds to transient uranium(II) centers. Angew. Chem. Int. Ed. 63, e202407339 (2024).

    Article  CAS  Google Scholar 

  42. Sheng, W., Rajeshkumar, T., Zhao, Y., Maron, L. & Zhu, C. Electronic delocalization and σ-aromaticity in heterometallic cluster with multiple thorium–palladium bonds. J. Am. Chem. Soc. 146, 12790–12798 (2024).

    Article  CAS  PubMed  Google Scholar 

  43. Boronski, J. T. et al. A crystalline tri-thorium cluster with σ-aromatic metal–metal bonding. Nature 598, 72–75 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Szczepanik, D. W. Bonding in a crystalline tri-thorium cluster: not σ-aromatic but still unique. Angew. Chem. Int. Ed. 61, e202204337 (2022).

    Article  CAS  Google Scholar 

  45. Cuyacot, B. J. R. & Foroutan-Nejad, C. [{Th(C8H8)Cl2}3]2− is stable but not aromatic. Nature 603, E18–E20 (2022).

    Article  CAS  PubMed  Google Scholar 

  46. Badri, Z. & Foroutan-Nejad, C. On the aromaticity of actinide compounds. Nat. Rev. Chem. 8, 551–560 (2024).

    Article  CAS  PubMed  Google Scholar 

  47. Lin, X. & Mo, Y. On the bonding nature in the crystalline tri-thorium cluster: core–shell syngenetic σ-aromaticity. Angew. Chem. Int. Ed. 61, e202209658 (2022).

    Article  CAS  Google Scholar 

  48. Zhu, Q., Fang, W., Maron, L. & Zhu, C. Heterometallic clusters with uranium–metal bonds supported by double-layer nitrogen–phosphorus ligands. Acc. Chem. Res. 55, 1718–1730 (2022).

    Article  CAS  PubMed  Google Scholar 

  49. Wang, P. et al. Facile dinitrogen and dioxygen cleavage by a uranium(III) complex: cooperativity between the non-innocent ligand and the uranium center. Angew. Chem. Int. Ed. 60, 473–479 (2021).

    Article  CAS  Google Scholar 

  50. Pyykkö, P. & Atsumi, M. Molecular single-bond covalent radii for elements 1–118. Chem. Eur. J. 15, 186–197 (2009).

    Article  PubMed  Google Scholar 

  51. Pyykkö, P. Additive covalent radii for single-, double-, and triple-bonded molecules and tetrahedrally bonded crystals: a summary. J. Phys. Chem. A 119, 2326–2337 (2015).

    Article  PubMed  Google Scholar 

  52. Ephritikhine, M. Synthesis, structure, and reactions of hydride, borohydride, and aluminohydride compounds of the f-elements. Chem. Rev. 97, 2193–2242 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Booth, C. H. et al. Decamethylytterbocene complexes of bipyridines and diazabutadienes: multiconfigurational ground states and open-shell singlet formation. J. Am. Chem. Soc. 131, 6480–6491 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Booth, C. H. et al. Intermediate-valence tautomerism in decamethylytterbocene complexes of methyl-substituted bipyridines. J. Am. Chem. Soc. 132, 17537–17549 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Parry, J. S., Cloke, G. N., Coles, S. J. & Hursthouse, M. B. Synthesis and characterization of the first sandwich complex of trivalent thorium: a structural comparison with the uranium analogue. J. Am. Chem. Soc. 121, 6867–6871 (1999).

    Article  CAS  Google Scholar 

  56. Langeslay, R. R., Fieser, M. E., Ziller, J. W., Furche, F. & Evans, W. J. Expanding thorium hydride chemistry through Th2+, including the synthesis of a mixed-valent Th4+/Th3+ hydride complex. J. Am. Chem. Soc. 138, 4036–4045 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Langeslay, R. R. et al. Synthesis, structure, and reactivity of the sterically crowded Th3+ complex (C5Me5)3Th including formation of the thorium carbonyl, [(C5Me5)3Th(CO)][BPh4]. J. Am. Chem. Soc. 139, 3387–3398 (2017).

    Article  CAS  PubMed  Google Scholar 

  58. Formanuik, A. et al. Actinide covalency measured by pulsed electron paramagnetic resonance spectroscopy. Nat. Chem. 9, 578–583 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Altman, A. B. et al. Chemical structure and bonding in a thorium(III)–aluminum heterobimetallic complex. Chem. Sci. 9, 4317–4324 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Huh, D. N., Roy, S., Ziller, J. W., Furche, F. & Evans, W. J. Isolation of a square-planar Th (III) complex: synthesis and structure of [Th(OC6H2tBu2-2,6-Me-4)4]1-. J. Am. Chem. Soc. 141, 12458–12463 (2019).

  61. Stranger, R., Smith, P. W. & Grey, I. E. Magneto-structural correlations and metal–metal bonding in exchange-coupled A3Mo2X9 (X = Cl, Br, I) complexes. Inorg. Chem. 28, 1271–1278 (1989).

    Article  CAS  Google Scholar 

  62. Duncan Lyngdoh, R. H., Schaefer, H. F. III & King, R. B. Metal–metal (MM) bond distances and bond orders in binuclear metal complexes of the first row transition metals titanium through zinc. Chem. Rev. 118, 11626–11706 (2018).

    Article  CAS  PubMed  Google Scholar 

  63. van Albada, G. A., Mutikainen, I., Turpeinen, U. & Reedijk, J. Crystal structure, magnetism and spectroscopy of two strongly antiferromagnetically coupled dinuclear Cu(II) paddlewheel-like compounds with 4-azabenzimidazole as a ligand. Polyhedron 25, 3278–3284 (2006).

    Article  Google Scholar 

  64. Graziano, B. J. et al. One-electron bonds in copper–aluminum and copper–gallium complexes. Chem. Sci. 13, 6525–6531 (2022).

    Article  PubMed Central  PubMed  Google Scholar 

  65. Shimajiri, T., Kawaguchi, S., Suzuki, T. & Ishigaki, Y. Direct evidence for a carbon–carbon one-electron σ-bond. Nature 634, 347–351 (2024).

    Article  CAS  PubMed  Google Scholar 

  66. Lepetit, C., Fau, P., Fajerwerg, K., Kahn, M. L. & Silvi, B. Topological analysis of the metal–metal bond: a tutorial review. Coord. Chem. Rev. 345, 150–181 (2017).

    Article  CAS  Google Scholar 

  67. O’Connor, C. J. in Progress in Inorganic Chemistry, Vol. 29 (ed. Lippard, S. J.) 203–283 (John Wiley & Sons, Inc., 1982).

  68. Weast, R. C. & Astle, M. J. CRC Handbook of Chemistry and Physics (CRC Press, 1979).

  69. Bill, E. Max-Planck Institute for Chemical Energy Conversion.

  70. Sheldrick, G. M. et al. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C 71, 3–8 (2015).

    Article  Google Scholar 

  71. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42, 339–341 (2009).

    Article  CAS  Google Scholar 

  72. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article  CAS  Google Scholar 

  73. Andrae, D., Häussermann, U., Dolg, M., Stoll, H. & Preuss, H. Energy-adjusted ab initio pseudopotentials for the second and third row transition elements. Theor. Chim. Acta 77, 123–141 (1990).

    Article  CAS  Google Scholar 

  74. Martin, J. M. L. & Sundermann, A. Correlation consistent valence basis sets for use with the Stuttgart–Dresden–Bonn relativistic effective core potentials: the atoms Ga–Kr and In–Xe. J. Chem. Phys. 114, 3408–3420 (2001).

    Article  CAS  Google Scholar 

  75. Höllwarth, A. et al. A set of d-polarization functions for pseudo-potential basis sets of the main group elements Al–Bi and f-type polarization functions for Zn, Cd, Hg. Chem. Phys. Lett. 208, 237–240 (1993).

    Article  Google Scholar 

  76. Ditchfield, R., Hehre, W. J. & Pople, J. A. Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. J. Chem. Phys. 54, 724–728 (1971).

    Article  CAS  Google Scholar 

  77. Hehre, W. J., Ditchfield, R. & Pople, J. A. Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Phys. 56, 2257–2261 (1972).

    Article  CAS  Google Scholar 

  78. Hariharan, P. C. & Pople, J. A. The influence of polarization functions on molecular orbital hydrogenation energies. Theor. Chim. Acta 28, 213–222 (1973).

    Article  CAS  Google Scholar 

  79. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. Gaussian 09, Revision D.01 (Gaussian, 2016).

Download references

Acknowledgements

The work in Dalian is supported by the National Natural Science Foundation of China (grant nos. 92161204 and 92461311, S.Y.) and Dalian Institute of Chemical Physics, Chinese Academy of Sciences (grant no. DICP I202312, S.Y.). The work in Nanjing is supported by the National Key R&D Program of China (grant no. 2021YFA1502500, C.Z.), the National Natural Science Foundation of China (grant no. 22271138, C.Z.), the Natural Science Foundation of Jiangsu Province (grant no. BK20220065, C.Z.) and the Fundamental Research Funds for the Central Universities (grant no. 020514380329, C.Z.). L.M. is a member of the Institute Universitaire de France. Humboldt Foundation and Chinese Academy of Science are acknowledged for support. CalMip is also gratefully acknowledged for a generous grant of computing time.

Author information

Authors and Affiliations

Authors

Contributions

C.Z. conceived this project. W.S. performed the synthesis experiments. F.X., W.C. and Y.Z. performed the SQUID and X-ray diffraction experiments. W.S. and Y.J. performed HRMS experiments. C.Z. and S.Y. analysed the experimental data. T.R. conducted the theoretical computations, and L.M. analysed the results. C.Z., S.Y. and L.M. drafted the paper. All authors discussed the results and contributed to the preparation of the final paper.

Corresponding authors

Correspondence to Shengfa Ye, Laurent Maron or Congqing Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Pekka Pyykkö, Weiqun Shi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Peter Seavill, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental details, Supplementary Figs. 1–44 and Tables 1–18.

Supplementary Data 1

X-ray crystallographic data for 2, CCDC 2182247.

Supplementary Data 2

X-ray crystallographic data for 3, CCDC 2182248.

Source data

Source Data Fig. 3

Source data of unprocessed magnetometric measurements.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, W., Xie, F., Rajeshkumar, T. et al. A crystalline dithorium complex with a Th–Th bond. Nat. Synth (2025). https://doi.org/10.1038/s44160-025-00789-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44160-025-00789-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing