Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MnO2-modified activated carbon and granular nano-TiO2 in tandem succeed in treating domestic well water arsenic at point of use

Abstract

Globally, millions of rural households that use groundwater for drinking are exposed to inorganic arsenic, frequently as arsenite (As(III)). Crucial for health protection, adsorption-based treatment works well for arsenate (As(V)) but not for slower-adsorbing As(III). Liquid oxidants, though impractical for point of use, are widely used to pre-oxidize As(III) to As(V) in point-of-entry treatment for better performance and cost saving. Here MnO2-modified activated carbon, a solid oxidant, was integrated into a point-of-use system with granular nano-TiO2 as the main adsorbent for two real-world tests, supplying As-safe water at less than US$0.01 l−1. One 4-month deployment treated 4,200 bed volumes (~2.1 m3) of groundwater with 69 ± 16 μg l−1 As (78 ± 5% As(III)). Another 28-month deployment treated 10,000 bed volumes (~5.0 m3) of groundwater with 42 ± 21 μg l−1 As (33 ± 21% As(III)). Interactions between the groundwater matrix and filter media affect performance, highlighting the need to verify household As removal technologies through long-term deployments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic diagram of the kitchen sink POU for As removal and monthly record of bed volumes of the treated water and daily water consumption during the 28-month deployment at YC.
Fig. 2: Compositions of influent and effluent versus the volume of treated water.
Fig. 3: Arsenic, iron and manganese of five treatment media samples in three filters obtained by XRF, digestion and selective leaching after 28-month deployment in YC.
Fig. 4: Microbially mediated Fe, N, and S reactions in YC POU.

Similar content being viewed by others

Data availability

Data for all the aqueous-phase and solid-phase samples mentioned in this article are provided in Supplementary Tables 39. Relative abundance of Fe-, Mn-, S- and N-related bacterial community for the solid samples after 28-month deployment at YC is provided in Supplementary Table 10, with the sequence data available in NCBI under accession number PRJNA1013411.

References

  1. Zheng, Y. et al. Redox control of arsenic mobilization in Bangladesh groundwater. Appl. Geochem. 19, 201–214 (2004).

    Article  CAS  Google Scholar 

  2. Ravenscroft, P., Brammer, H. & Richards, K. Arsenic Pollution: A Global Synthesis (Wiley-Blackwell, 2009).

  3. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First Addendum (World Health Organization, 2017).

  4. Smith, A. H. et al. Cancer risks from arsenic in drinking-water. Environ. Health Perspect. 97, 259–267 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen, Y. et al. Arsenic exposure from drinking water and mortality from cardiovascular disease in Bangladesh: prospective cohort study. Br. Med. J. 342, d2431 (2011).

    Article  Google Scholar 

  6. Podgorski, J. & Berg, M. Global threat of arsenic in groundwater. Science 368, 845–850 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Daniel, D., Marks, S. J., Pande, S. & Rietveld, L. Socio-environmental drivers of sustainable adoption of household water treatment in developing countries. NPJ Clean Water https://doi.org/10.1038/s41545-018-0012-z (2018).

  8. Johnston, R. B., Hanchett, S. & Khan, M. H. The socio-economics of arsenic removal. Nat. Geosci. 3, 2–3 (2010).

    Article  CAS  Google Scholar 

  9. Yang, Q. et al. Reduction in drinking water arsenic exposure and health risk through arsenic treatment among private well households in Maine and New Jersey, USA. Sci. Total Environ. 738, 139683 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Petrusevski, B., Sharma, S. K., Kruis, F., Omeruglu, P. & Schippers, J. C. Family filter with iron-coated sand: solution for arsenic removal in rural areas. Water Supply 2, 127–133 (2002).

    Article  CAS  Google Scholar 

  11. Spayd, S. Arsenic Water Treatment for Private Wells in New Jersey. New Jersey Geological and Water Survey, Information Circular https://www.nj.gov/dep/njgs/enviroed/infocirc/ArsenicMainICv1.pdf (2023).

  12. Spayd, S. Arsenic Water Treatment for Residential Wells in New Jersey. New Jersey Geological Survey, Information Circular https://www.nj.gov/dep/pwta/Arsenic_Treatment.pdf (2007).

  13. Mahanta, R., Chowdhury, J. & Nath, H. K. Health costs of arsenic contamination of drinking water in Assam, India. Econ. Anal. Policy 49, 30–42 (2016).

    Article  Google Scholar 

  14. Roy, J. Economic benefits of arsenic removal from ground water—a case study from West Bengal, India. Sci. Total Environ. 397, 1–12 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Walker, M., Seiler, R. L. & Meinert, M. Effectiveness of household reverse-osmosis systems in a Western US region with high arsenic in groundwater. Sci. Total Environ. 389, 245–252 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Zheng, Y. Lessons learned from arsenic mitigation among private well households. Curr. Environ. Health Rep. 4, 373–382 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Westerhoff, P. K., Benn, T. M., Chen, A., Wang, L. & Cumming, L. J. Assessing Arsenic Removal by Metal (Hydr)oxide Adsorptive Media Using Rapid Small Scale Column Tests Report No. EPA/600/R-08/051US (US Environmental Protection Agency, 2008).

  18. Bang, S. et al. Removal of arsenate from water by adsorbents: a comparative case study. Environ. Geochem. Health 33, 133–141 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Siegel, M. et al. Pilot Test of Arsenic Adsorptive Media Treatment Technologies at Socorro Springs, New Mexico. Materials Characterization and Phase I Results. Sandia Report SAND2007-0161. Sandia National Laboratories https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=74f9472fdce70ccfc9751745c1724d18d311d177 (2007).

  20. Westerhoff, P., De Haan, M., Martindale, A. & Badruzzaman, M. Arsenic adsorptive media technology selection strategies. Water Qual. Res. J. Can. 41, 171–184 (2006).

    Article  CAS  Google Scholar 

  21. Dou, X. et al. Occurrence of arsenic in groundwater in the suburbs of Beijing and its removal using an iron-cerium bimetal oxide adsorbent. Water Qual. Res. J. Can. 41, 140–146 (2006).

    Article  CAS  Google Scholar 

  22. Cui, J., Du, J., Yu, S., Jing, C. & Chan, T. Groundwater arsenic removal using granular TiO2: integrated laboratory and field study. Environ. Sci. Pollut. Res. 22, 8224–8234 (2015).

    Article  CAS  Google Scholar 

  23. Bang, S., Patel, M., Lippincott, L. & Meng, X. G. Removal of arsenic from groundwater by granular titanium dioxide adsorbent. Chemosphere 60, 389–397 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Pena, M. E., Korfiatis, G. P., Patel, M., Lippincott, L. & Meng, X. G. Adsorption of As(V) and As(III) by nanocrystalline titanium dioxide. Water Res. 39, 2327–2337 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Jing, C., Meng, X., Calvache, E. & Jiang, G. Remediation of organic and inorganic arsenic contaminated groundwater using a nanocrystalline TiO2-based adsorbent. Environ. Pollut. 157, 2514–2519 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Hu, S., Shi, Q. & Jing, C. Groundwater arsenic adsorption on granular TiO2: integrating atomic structure, filtration, and health impact. Environ. Sci. Technol. 49, 9707–9713 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Manning, B. A., Fendorf, S. E., Bostick, B. & Suarez, D. L. Arsenic(III) oxidation and arsenic(V) adsorption reactions on synthetic birnessite. Environ. Sci. Technol. 36, 976–981 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, W. et al. Efficient oxidation and sorption of arsenite using a novel titanium(IV)–manganese(IV) binary oxide sorbent. J. Hazard. Mater. 353, 410–420 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Wang, Y. et al. Simultaneous removal and oxidation of arsenic from water by δ-MnO2 modified activated carbon. J. Environ. Sci. 94, 147–160 (2020).

    Article  CAS  Google Scholar 

  30. Zhang, W. et al. Enhanced removal of arsenite and arsenate by a multifunctional Fe–Ti–Mn composite oxide: photooxidation, oxidation and adsorption. Water Res. 147, 264–275 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Zhang, G., Qu, J., Liu, H., Liu, R. & Wu, R. Preparation and evaluation of a novel Fe–Mn binary oxide adsorbent for effective arsenite removal. Water Res. 41, 1921–1928 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Shan, C. & Tong, M. Efficient removal of trace arsenite through oxidation and adsorption by magnetic nanoparticles modified with Fe–Mn binary oxide. Water Res. 47, 3411–3421 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Möller, T., Sylvester, P., Shepard, D. & Morassi, E. Arsenic in groundwater in New England—point-of-entry and point-of-use treatment of private wells. Desalination 243, 293–304 (2009).

    Article  Google Scholar 

  34. Pratson, E., Vengosh, A., Dwyer, G., Pratson, L. & Klein, E. The effectiveness of arsenic remediation from groundwater in a private home. Ground Water Monit. Rem. 30, 87–93 (2010).

    Article  Google Scholar 

  35. Thomson, B. M., Cotter, T. J. & Chwirka, J. D. Design and operation of point-of-use treatment system for arsenic removal. J. Environ. Eng. 129, 561–564 (2003).

    Article  CAS  Google Scholar 

  36. Barringer, J. L. et al. Sources and temporal dynamics of arsenic in a New Jersey watershed, USA. Sci. Total Environ. 379, 56–74 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Dixit, S. & Hering, J. G. Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility. Environ. Sci. Technol. 37, 4182–4189 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Hsu, J.-C., Lin, C.-J., Liao, C.-H. & Chen, S.-T. Removal of As(V) and As(III) by reclaimed iron-oxide coated sands. J. Hazard. Mater. 153, 817–826 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Jegadeesan, G. et al. Arsenic sorption on TiO2 nanoparticles: size and crystallinity effects. Water Res. 44, 965–973 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Eggerichs, T. et al. Growth of iron-oxidizing bacteria Gallionella ferruginea and Leptothrix cholodnii in oligotrophic environments: Ca, Mg, and C as limiting factors and G. ferruginea necromass as C-source. Geomicrobiol. J. 37, 190–199 (2020).

    Article  CAS  Google Scholar 

  41. Cheng, Q., Huang, Y., Nengzi, L. & Zhang, J. Performance and microbial community profiles in pilot-scale biofilter for the simultaneous removal of ammonia, iron and manganese at different manganese concentrations. Bioprocess. Biosyst. Eng. 42, 741–752 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Mohan, D. & Pittman, C. U. Jr. Arsenic removal from water/wastewater using adsorbents—a critical review. J. Hazard. Mater. 142, 1–53 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. USEPA. Arsenic Treatment Technology Evaluation Handbook for Small Systems (US Environmental Protection Agency, 2003).

  44. Meng, X. G., Bang, S. & Korfiatis, G. P. Effects of silicate, sulfate, and carbonate on arsenic removal by ferric chloride. Water Res. 34, 1255–1261 (2000).

    Article  CAS  Google Scholar 

  45. Biswas, A. et al. Role of competing ions in the mobilization of arsenic in groundwater of Bengal Basin: insight from surface complexation modeling. Water Res. 55, 30–39 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Gao, Y. & Mucci, A. Acid base reactions, phosphate and arsenate complexation, and their competitive adsorption at the surface of goethite in 0.7 M NaCl solution. Geochim. Cosmochim. Acta 65, 2361–2378 (2001).

    Article  CAS  Google Scholar 

  47. George, C. M., Smith, A. H., Kalman, D. A. & Steinmaus, C. M. Reverse osmosis filter use and high arsenic levels in private well water. Arch. Environ. Occup. Health 61, 171–175 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. He, Y. et al. A critical review of on-site inorganic arsenic screening methods. J. Environ. Sci. 125, 453–469 (2023).

    Article  CAS  Google Scholar 

  49. Meng, X. & Wang, W. Speciation of arsenic by disposable cartridges. In Book of Posters of the Third International Conference on Arsenic Exposure and Health Effects (Society of Environmental Geochemistry and Health, Univ. Colorado, 1998).

  50. Keon, N. E., Swartz, C. H., Brabander, D. J., Harvey, C. F. & Hemond, H. F. Validation of an arsenic sequential extraction method for evaluating mobility in sediments. Environ. Sci. Technol. 35, 2778–2784 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Yu, Y., Lee, C., Kim, J. & Hwang, S. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol. Bioeng. 89, 670–679 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Chen family for allowing us to install the household As removal units in Yinchuan Plain. Support was provided by the National Natural Science Foundation of China (grant 41831279, Y.Z.), the National Key R&D Program of China (grant 2021YFA0715900, Y.D.), the Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks (grant ZDSYS20220606100604008, Y.D. and Y.Z.), the Guangdong Province Bureau of Education (grant 2020KCXTD006, Y.Z.), the Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control (grant 2023B1212060002, Y.Z.), the National Natural Science Foundation of China (grant 32250410300, A.P.) and High Level of Special Funds (grant G030290001, Y.Z.)

Author information

Authors and Affiliations

Authors

Contributions

Design: X.M and Y.Z. Deployment and sampling: Y.S., Z.L., Q.S., Y.D., Q.Y., X.M. and Y.Z. Methodology: Y.D., Y.S., A.P., B.Y., Q.S., Q.Y. and D.Z.Z. Formal analysis: Y.D., Y.S., A.P. and X.M. Project administration: Y.Z. and X.M. Writing—original draft: Y.D. and Y.Z. Writing—review and editing: Y.D., Y.S., A.P., Z.L., B.L., Q.S., D.Z.Z., Q.Y., X.M. and Y.Z.

Corresponding authors

Correspondence to Xiaoguang Meng or Yan Zheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Mengchang He and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text 1–5, Figs. 1–8 and Tables 1–10.

Reporting Summary

Source data

Source Data Fig. 1

Source data for bed volumes of treated water and daily water use for each month.

Source Data Fig. 2

Source data for arsenic, iron and manganese in the influent and effluent for the 4-month deployment in NJ and 28-month deployment in YC.

Source Data Fig. 3

Source data for arsenic, iron and manganese of five treatment media samples collected after 28-month deployment in YC.

Source Data Fig. 4

Source data for relative abundance of Fe-, N- and S-related bacterial community for the five solid samples.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, Y., Sun, Y., Palomo, A. et al. MnO2-modified activated carbon and granular nano-TiO2 in tandem succeed in treating domestic well water arsenic at point of use. Nat Water 2, 674–683 (2024). https://doi.org/10.1038/s44221-024-00268-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44221-024-00268-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing