Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Solar-driven sewage sludge electroreforming coupled with biological funnelling to cogenerate green food and hydrogen

Abstract

The ever-increasing generation of sewage sludge in megacities places a substantial burden on waste treatment systems. The complex and resilient structure of sludge renders conventional pretreatment and biological reclamation methods time-consuming, energy-inefficient and environmentally burdensome. Here we present an integrated mechano-electro-bioprocess that valorizes sludge with minimal environmental impact. We achieve nearly complete recovery of organics with ~91.4% total organic carbon (TOC), which are effectively converted into single-cell protein (>63% TOC) in a tandem process. Heavy metals are efficiently concentrated and stabilized, while simultaneously producing green hydrogen at an impressive efficiency and rate (~10% solar-to-hydrogen energy efficiency, rate >13 l per hour). A comprehensive life-cycle and techno-economic analysis confirms the substantial environmental and economic benefits of this approach. Notably, it results in a 99.5% reduction in CO2 emissions and a 99.3% decrease in energy depletion compared with conventional anaerobic digestion. As renewable electricity deployment expands globally, this mechano-electro-bioprocess offers a promising path towards sustainable development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Integrated fractionation and upgrading of WAS with simultaneous green hydrogen generation.
Fig. 2: Element analysis.
Fig. 3: Electrochemical upgrading of the solute of WAS.
Fig. 4: Product analysis.
Fig. 5: Solar-driven commercial-scale MEA demonstration.
Fig. 6: Biosynthesis of single-cell protein.
Fig. 7: LCA and TEA analysis.

Similar content being viewed by others

Data availability

All study data are included in the article and its Supplementary Information.

References

  1. LeBlanc, R. J., Matthews, P. & Richard, R. P. Global Atlas of Excreta, Wastewater Sludge, and Biosolids Management: Moving Forward the Sustainable and Welcome Uses of a Global Resource (UN-Habitat, 2009).

  2. Zhen, G., Lu, X., Kato, H., Zhao, Y. & Li, Y.-Y. Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: current advances, full-scale application and future perspectives. Renew. Sustain. Energy Rev. 69, 559–577 (2017).

    Article  CAS  Google Scholar 

  3. Shanmugam, K., Gadhamshetty, V., Tysklind, M., Bhattacharyya, D. & Upadhyayula, V. K. K. A sustainable performance assessment framework for circular management of municipal wastewater treatment plants. J. Cleaner Prod. https://doi.org/10.1016/j.jclepro.2022.130657 (2022).

  4. Hii, K., Baroutian, S., Parthasarathy, R., Gapes, D. J. & Eshtiaghi, N. A review of wet air oxidation and thermal hydrolysis technologies in sludge treatment. Bioresour. Technol. 155, 289–299 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Low, E. W., Chase, H. A., Milner, M. G. & Curtis, T. P. Uncoupling of metabolism to reduce biomass production in the activated sludge process. Water Res. 34, 3204–3212 (2000).

    Article  CAS  Google Scholar 

  6. Gonzalez, A., Hendriks, A., van Lier, J. B. & de Kreuk, M. Pre-treatments to enhance the biodegradability of waste activated sludge: elucidating the rate limiting step. Biotechnol. Adv. 36, 1434–1469 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Wang, Q. et al. Technologies for reducing sludge production in wastewater treatment plants: state of the art. Sci. Total Environ. 587-588, 510–521 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Appels, L., Baeyens, J., Degrève, J. & Dewil, R. Principles and potential of the anaerobic digestion of waste-activated sludge. Prog. Energy Combust. Sci. 34, 755–781 (2008).

    Article  CAS  Google Scholar 

  9. Toutian, V., Barjenbruch, M., Unger, T., Loderer, C. & Remy, C. Effect of temperature on biogas yield increase and formation of refractory COD during thermal hydrolysis of waste activated sludge. Water Res. 171, 115383 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Neumann, P., Pesante, S., Venegas, M. & Vidal, G. Developments in pre-treatment methods to improve anaerobic digestion of sewage sludge. Rev. Environ. Sci. Biotechnol. 15, 173–211 (2016).

    Article  CAS  Google Scholar 

  11. Fan, Y., Hornung, U. & Dahmen, N. Hydrothermal liquefaction of sewage sludge for biofuel application: a review on fundamentals, current challenges and strategies. Biomass Bioenerg. https://doi.org/10.1016/j.biombioe.2022.106570 (2022).

  12. Tyagi, V. K., Khan, A. A., Jern, N. W., Khursheed, A. & Kazmi, A. A. Post Treatments of Anaerobically Treated Effluents (IWA Publishing, 2019).

  13. Van Wijk, A., van der Roest, E. & Boere, J. Solar Power to the People (IOS Press, 2018).

  14. Zhang, S. et al. Atomically dispersed bimetallic Fe–Co electrocatalysts for green production of ammonia. Nat. Sustain. https://doi.org/10.1038/s41893-022-00993-7 (2022).

    Article  Google Scholar 

  15. Yang, X. et al. Achievements, challenges, and perspectives on nitrogen electrochemistry for carbon-neutral energy technologies. Angew. Chem. https://doi.org/10.1002/anie.202215938 (2022).

    Article  PubMed  Google Scholar 

  16. Verbeeck, K. et al. Upgrading the value of anaerobic digestion via chemical production from grid injected biomethane. Energy Environ. Sci. 11, 1788–1802 (2018).

    Article  CAS  Google Scholar 

  17. Xiao, K. & Zhou, Y. Protein recovery from sludge: a review. J. Cleaner Prod. https://doi.org/10.1016/j.jclepro.2019.119373 (2020).

  18. Bruni, C. et al. Targeted bio-based volatile fatty acid production from waste streams through anaerobic fermentation: link between process parameters and operating scale. ACS Sustain. Chem. Eng. 9, 9970–9987 (2021).

    Article  CAS  Google Scholar 

  19. Chen, Y. et al. Enhanced volatile fatty acids (VFAs) production in a thermophilic fermenter with stepwise pH increase—investigation on dissolved organic matter transformation and microbial community shift. Water Res. 112, 261–268 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Yuan, Y. et al. Advances in enhanced volatile fatty acid production from anaerobic fermentation of waste activated sludge. Sci. Total Environ. 694, 133741 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Barrios, J. A., Cano, A., Rivera, F. F., Cisneros, M. E. & Duran, U. Efficiency of integrated electrooxidation and anaerobic digestion of waste activated sludge. Biotechnol. Biofuels 14, 81 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Huang, H., Zeng, Q., Heynderickx, P. M., Chen, G. H. & Wu, D. Electrochemical pretreatment (EPT) of waste activated sludge: extracellular polymeric substances matrix destruction, sludge solubilisation and overall digestibility. Bioresour. Technol. 330, 125000 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Zeng, Q. et al. Electrochemical pretreatment for stabilization of waste activated sludge: simultaneously enhancing dewaterability, inactivating pathogens and mitigating hydrogen sulfide. Water Res. 166, 115035 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Chen, Y., Chen, H., Li, J. & Xiao, L. Rapid and efficient activated sludge treatment by electro-Fenton oxidation. Water Res. 152, 181–190 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Olvera-Vargas, H., Zheng, X., Garcia-Rodriguez, O. & Lefebvre, O. Sequential ‘electrochemical peroxidation–electro-fenton’ process for anaerobic sludge treatment. Water Res. 154, 277–286 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Anglada, A., Urtiaga, A. & Ortiz, I. Pilot scale performance of the electro-oxidation of landfill leachate at boron-doped diamond anodes. Environ. Sci. Technol. 43, 2035–2040 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Jafari, M. & Botte, G. G. Electrochemical valorization of waste activated sludge for short-chain fatty acids production. Front. Chem. 10, 974223 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Geng, S.-K. et al. Nickel ferrocyanide as a high-performance urea oxidation electrocatalyst. Nat. Energy 6, 904–912 (2021).

    Article  CAS  Google Scholar 

  29. Li, Y., Wei, X., Chen, L. & Shi, J. Electrocatalytic hydrogen production trilogy. Angew. Chem. https://doi.org/10.1002/anie.202009854 (2020).

    Article  PubMed  Google Scholar 

  30. Kaufman Rechulski, M. D., Käldström, M., Richter, U., Schüth, F. & Rinaldi, R. Mechanocatalytic depolymerization of lignocellulose performed on hectogram and kilogram scales. Ind. Eng. Chem. Res. 54, 4581–4592 (2015).

    Article  CAS  Google Scholar 

  31. Yao, S. G. et al. Mechanochemical treatment facilitates two-step oxidative depolymerization of kraft lignin. ACS Sustain. Chem. Eng. 6, 5990–5998 (2018).

    Article  CAS  Google Scholar 

  32. Sun, J., Zhang, L. & Loh, K.-C. Review and perspectives of enhanced volatile fatty acids production from acidogenic fermentation of lignocellulosic biomass wastes. Bioresour. Bioprocess. https://doi.org/10.1186/s40643-021-00420-3 (2021).

  33. Pikaar, I. et al. Resource Recovery from Water: Principles and Application (IWA Publishing, 2022).

  34. Honda, R., Fukushi, K. & Yamamoto, K. Optimization of wastewater feeding for single-cell protein production in an anaerobic wastewater treatment process utilizing purple non-sulfur bacteria in mixed culture condition. J. Biotechnol. 125, 565–573 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Hülsen, T., Hsieh, K., Lu, Y., Tait, S. & Batstone, D. J. Simultaneous treatment and single cell protein production from agri-industrial wastewaters using purple phototrophic bacteria or microalgae—a comparison. Bioresour. Technol. 254, 214–223 (2018).

    Article  PubMed  Google Scholar 

  36. Wu, D., Zhang, L., Le, C., Wang, L. & Zhou, Y. Pathways and mechanisms of single-cell protein production: carbon and nutrient transformation. ACS ES&T Water 1, 1313–1320 (2021).

    Article  CAS  Google Scholar 

  37. Hulsen, T., Stegman, S., Batstone, D. J. & Capson-Tojo, G. Naturally illuminated photobioreactors for resource recovery from piggery and chicken-processing wastewaters utilising purple phototrophic bacteria. Water Res. 214, 118194 (2022).

    Article  CAS  PubMed  Google Scholar 

  38. Mukherjee, A. et al. Effective power management system in stacked microbial fuel cells for onsite applications. J. Power Sources https://doi.org/10.1016/j.jpowsour.2021.230684 (2022).

  39. Wilberforce, T., Sayed, E. T., Abdelkareem, M. A., Elsaid, K. & Olabi, A. G. Value added products from wastewater using bioelectrochemical systems: current trends and perspectives. J. Water Process Eng. https://doi.org/10.1016/j.jwpe.2020.101737 (2021).

  40. Zheng, T. et al. Upcycling CO2 into energy-rich long-chain compounds via electrochemical and metabolic engineering. Nat. Catal. 5, 388–396 (2022).

    Article  CAS  Google Scholar 

  41. Vincent, I., Kruger, A. & Bessarabov, D. Development of efficient membrane electrode assembly for low cost hydrogen production by anion exchange membrane electrolysis. Int. J. Hydrogen Energy 42, 10752–10761 (2017).

    Article  CAS  Google Scholar 

  42. Spiller, M. et al. Environmental impact of microbial protein from potato wastewater as feed ingredient: comparative consequential life cycle assessment of three production systems and soybean meal. Water Res. 171, 115406 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Sakarika, M. et al. Purple non-sulphur bacteria and plant production: benefits for fertilization, stress resistance and the environment. Microb. Biotechnol. 13, 1336–1365 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Zarezadeh, S. et al. Microalgae and phototrophic purple bacteria for nutrient recovery from agri-industrial effluents: influences on plant growth, rhizosphere bacteria, and putative carbon- and nitrogen-cycling genes. Front. Plant Sci. 10, 1193 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zhao, H. et al. Raw biomass electroreforming coupled to green hydrogen generation. Nat. Commun. 12, 2008 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen, X., Yang, H., Zhong, Z. & Yan, N. Base-catalysed, one-step mechanochemical conversion of chitin and shrimp shells into low molecular weight chitosan. Green Chem. 19, 2783–2792 (2017).

    Article  CAS  Google Scholar 

  47. Lu, D. et al. Liquid and solids separation for target resource recovery from thermal hydrolyzed sludge. Water Res. 171, 115476 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Chen, Y. et al. Phosphorus release and realignment in anaerobic digestion of thermal hydrolysis pretreatment sludge–masking effects from high ammonium. Water Res. 255, 121488 (2024).

    Article  CAS  PubMed  Google Scholar 

  49. He, C., Wang, K., Yang, Y., Amaniampong, P. N. & Wang, J. Y. Effective nitrogen removal and recovery from dewatered sewage sludge using a novel integrated system of accelerated hydrothermal deamination and air stripping. Environ. Sci. Technol. 49, 6872–6880 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Taitt, B. J., Nam, D.-H. & Choi, K.-S. A comparative study of nickel, cobalt, and iron oxyhydroxide anodes for the electrochemical oxidation of 5-Hydroxymethylfurfural to 2,5-furandicarboxylic acid. ACS Catal. 9, 660–670 (2018).

    Article  Google Scholar 

  51. Huang, X., Guo, Y., Zou, Y. & Jiang, J. Electrochemical oxidation of glycerol to hydroxypyruvic acid on cobalt (oxy)hydroxide by high-valent cobalt redox centers. Appl. Catal. B https://doi.org/10.1016/j.apcatb.2022.121247 (2022).

  52. Qi, Y. et al. Insights into the activity of nickel boride/nickel heterostructures for efficient methanol electrooxidation. Nat. Commun. 13, 4602 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yu, X. et al. Hydrogen evolution reaction in alkaline media: alpha- or beta-nickel hydroxide on the surface of platinum? ACS Energy Lett. 3, 237–244 (2018).

    Article  CAS  Google Scholar 

  54. Fan, L. et al. High entropy alloy electrocatalytic electrode toward alkaline glycerol valorization coupling with acidic hydrogen production. J. Am. Chem. Soc. 144, 7224–7235 (2022).

    Article  CAS  PubMed  Google Scholar 

  55. Song, F. et al. Interfacing nickel nitride and nickel boosts both electrocatalytic hydrogen evolution and oxidation reactions. Nat. Commun. https://doi.org/10.1038/s41467-018-06728-7 (2018).

  56. You, B., Jiang, N., Sheng, M., Bhushan, M. W. & Sun, Y. Hierarchically porous urchin-like Ni2P superstructures supported on nickel foam as efficient bifunctional electrocatalysts for overall water splitting. ACS Catal. 6, 714–721 (2016).

    Article  CAS  Google Scholar 

  57. Chen, Q. et al. Synergistic effect in ultrafine PtNiP nanowires for highly efficient electrochemical hydrogen evolution in alkaline electrolyte. Appl. Catal. B https://doi.org/10.1016/j.apcatb.2021.120754 (2022).

  58. Zhou, K. L. et al. Platinum single-atom catalyst coupled with transition metal/metal oxide heterostructure for accelerating alkaline hydrogen evolution reaction. Nat. Commun. 12, 3783 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nørskov, J. K. et al. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152, J23 (2005).

    Article  Google Scholar 

  60. Wang, Y. et al. Enhanced nitrate-to-ammonia activity on copper–nickel alloys via tuning of intermediate adsorption. J. Am. Chem. Soc. 142, 5702–5708 (2020).

    Article  CAS  PubMed  Google Scholar 

  61. Meng, N., Huang, Y., Liu, Y., Yu, Y. & Zhang, B. Electrosynthesis of urea from nitrite and CO2 over oxygen vacancy-rich ZnO porous nanosheets. Cell Rep. Phys. Sci. https://doi.org/10.1016/j.xcrp.2021.100378 (2021).

  62. Du, W. & Parker, W. Characterization of sulfur in raw and anaerobically digested municipal wastewater treatment sludges. Water Environ. Res. 85, 124–132 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Du, N. et al. Anion-exchange membrane water electrolyzers. Chem. Rev. 122, 11830–11895 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Immerz, C. et al. Effect of the MEA design on the performance of PEMWE single cells with different sizes. J. Appl. Electrochem. 48, 701–711 (2018).

    Article  CAS  Google Scholar 

  65. Robinson, R. K. Encyclopedia of Food Microbiology (Academic Press, 2014).

  66. Tian, B. & Hua, Y. Carotenoid biosynthesis in extremophilic Deinococcus–Thermus bacteria. Trends Microbiol. 18, 512–520 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Spanoghe, J. et al. Storage, fertilization and cost properties highlight the potential of dried microbial biomass as organic fertilizer. Microb. Biotechnol. 13, 1377–1389 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hulsen, T. et al. Outdoor demonstration-scale flat plate photobioreactor for resource recovery with purple phototrophic bacteria. Water Res. 216, 118327 (2022).

    Article  CAS  PubMed  Google Scholar 

  69. NEMS Prices (Energy Market Company, 2021); https://www.nems.emcsg.com/nems-prices

  70. LaTurner, Z. W., Bennett, G. N., San, K.-Y. & Stadler, L. B. Single cell protein production from food waste using purple non-sulfur bacteria shows economically viable protein products have higher environmental impacts. J. Cleaner Prod. 276, 123114 (2020).

    Article  CAS  Google Scholar 

  71. Hülsen, T., Barnes, A. C., Batstone, D. J. & Capson-Tojo, G. Creating value from purple phototrophic bacteria via single-cell protein production. Curr. Opin. Biotechnol. 76, 102726 (2022).

    Article  PubMed  Google Scholar 

  72. Renewable Energy Market Update–May 2022 (IEA, 2022).

  73. Federation, W. E. & Association, A. Standard Methods for the Examination of Water and Wastewater (APHA, 2005).

  74. Environmental Management–Life Cycle Assessment–Requirements and Guidelines (ISO, 2006).

  75. ISO Technical Committee in Environmental Management—Life Cycle Assessment—Principles and Framework 235–248 (ISO, 2006).

  76. Vince, F., Aoustin, E., Bréant, P. & Marechal, F. LCA tool for the environmental evaluation of potable water production. Desalination 220, 37–56 (2008).

    Article  CAS  Google Scholar 

  77. Renou, S., Thomas, J. S., Aoustin, E. & Pons, M. N. Influence of impact assessment methods in wastewater treatment LCA. J. Cleaner Prod. 16, 1098–1105 (2008).

    Article  Google Scholar 

  78. CML-IA Characterisation Factors (Universiteit Leiden, 2016).

  79. Nicholson, S. R., Rorrer, N. A., Carpenter, A. C. & Beckham, G. T. Manufacturing energy and greenhouse gas emissions associated with plastics consumption. Joule 5, 673–686 (2021).

    Article  CAS  Google Scholar 

  80. Co-digestion of food waste and used water sludge enhances biogas production for greater energy generation. National Environment Agency https://www.nea.gov.sg/media/news/news/index/co-digestion-of-food-waste-and-used-water-sludge-enhances-biogas-production-for-greater-energy-generation (2019).

  81. Solid waste management infrastructure. National Environment Agency https://www.nea.gov.sg/our-services/waste-management/waste-management-infrastructure/solid-waste-management-infrastructure (2024)

Download references

Acknowledgements

This work was supported by A*STAR Science and Engineering Research Council AME IRG funding (A1983c0029, H.L.) and the National Research Foundation, Prime Ministers Office, Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE) programme (award number NRF2022-ITC004-0001, H.L.). We acknowledge the Facility for Analysis, Characterization, Testing and Simulation (FACTS), Nanyang Technological University Singapore for use of electron microscopy and X-ray facilities and L.M. Shan and A.K.J. On from NEWRI Analytics Cluster, Nanyang Technological University, Singapore, for their guidance on product analysis.

Author information

Authors and Affiliations

Contributions

H.Z. and H.L. designed the experiments. H.Z. performed electrode fabrication and electrochemical characterizations. D.W. carried out the biosynthesis experiments. C.L., H.Z. and L.Q.L. conducted the product identification and quantification. H.Z. performed material characterizations. Y. Lv helped with the GPC and high-performance liquid chromatograph analysis. X.C. helped with the schematic diagram drawing. Z.S. took the LCA and TEA analysis. H.Z. wrote the paper. H.Z., D.L., Z.S., Y. Li, O.L.D., W.T., Z.Z., J.Z., Y.Z. and H.L. discussed the results and commented on the paper.

Corresponding authors

Correspondence to Yan Zhou or Hong Li.

Ethics declarations

Competing interests

H.Z., L.Q.L. and H.L. are inventors on a PCT application related to this work, filed by International Bureau at the WIPO (application number PCT/SG2022/050112). The other authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Rong He, Damien Voiry and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Notes 1–7, Figs. 1–63 and Tables 1–6.

Supplementary Video 1

Solar-driven MEA reactor for scalable hybrid sludge reforming and hydrogen generation demonstration.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Sun, Z., Li, C. et al. Solar-driven sewage sludge electroreforming coupled with biological funnelling to cogenerate green food and hydrogen. Nat Water 2, 1102–1115 (2024). https://doi.org/10.1038/s44221-024-00329-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44221-024-00329-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing