Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A robust pyrazolate metal–organic framework for integrated perfluorooctanoic acid concentration and degradation

Abstract

Perfluorooctanoic acid (PFOA) poses a substantial threat to human health due to its bioaccumulation and carcinogenic nature. Current remediation strategies typically focus on either adsorption or degradation, neglecting the potential of an integrated approach. Herein, we present a pyrazolate metal–organic framework (MOF), PCN-1003, featuring a lamellar structure with one-dimensional open channels. PCN-1003 exhibits exceptional stability across a wide pH range (1–12) in aqueous solutions, achieving efficient PFOA adsorption (642 mg g−1). Mechanistic studies revealed that a PFOA–acetate exchange process dominates, representing a remarkable example of such a mechanism and enabling efficient PFOA uptake. Notably, PCN-1003 greatly facilitates PFOA degradation at a much lower temperature (90 °C) than observed in previously reported methods, with an approximately threefold catalytic acceleration effect, attributed to the coordination of PFOA and the confined environment within PCN-1003. This study pioneers integrated PFOA concentration and degradation using a single MOF, presenting a promising avenue for treating water contaminated with per- and polyfluoroalkyl substances.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Crystal structure and topology of PCN-1003.
Fig. 2: Structural characterization of PCN-1003.
Fig. 3: Performance and mechanism of PFOA adsorption in PCN-1003.
Fig. 4: Study of the decarboxylation of PFOA.

Similar content being viewed by others

Data availability

The X-ray crystallographic coordinates for PCN-1003 reported in this study have been deposited at the Cambridge Crystallographic Data Centre. These data can be obtained free of charge under deposition number 2358814. All other data supporting the findings of this study are available within the article and its Supplementary Information or from the corresponding author upon reasonable request.

References

  1. Lim, X. Can the world leave ‘forever chemicals’ behind? Nature 620, 24–27 (2023).

    Article  PubMed  CAS  Google Scholar 

  2. Trang, B. et al. Low-temperature mineralization of perfluorocarboxylic acids. Science 377, 839–845 (2022).

    Article  PubMed  CAS  Google Scholar 

  3. Li, R., Adarsh, N. N., Lu, H. & Wriedt, M. Metal–organic frameworks as platforms for the removal of per- and polyfluoroalkyl substances from contaminated waters. Matter 5, 3161–3193 (2022).

    Article  CAS  Google Scholar 

  4. Du, Z. et al. Removal of perfluorinated carboxylates from washing wastewater of perfluorooctanesulfonyl fluoride using activated carbons and resins. J. Hazard. Mater. 286, 136–143 (2015).

    Article  PubMed  CAS  Google Scholar 

  5. Du, Z. et al. Adsorption behavior and mechanism of perfluorinated compounds on various adsorbents—a review. J. Hazard. Mater. 274, 443–454 (2014).

    Article  PubMed  CAS  Google Scholar 

  6. Wang, W. et al. Cationic covalent organic framework for efficient removal of PFOA substitutes from aqueous solution. Chem. Eng. J. 412, 127509 (2021).

    Article  CAS  Google Scholar 

  7. Ji, W. et al. Removal of GenX and perfluorinated alkyl substances from water by amine-functionalized covalent organic frameworks. J. Am. Chem. Soc. 140, 12677–12681 (2018).

    Article  PubMed  CAS  Google Scholar 

  8. Wang, S. et al. Photocatalytic degradation of perfluorooctanoic acid and perfluorooctane sulfonate in water: a critical review. Chem. Eng. J. 328, 927–942 (2017).

    Article  CAS  Google Scholar 

  9. Gomez-Ruiz, B. et al. Photocatalytic degradation and mineralization of perfluorooctanoic acid (PFOA) using a composite TiO2–rGO catalyst. J. Hazard. Mater. 344, 950–957 (2018).

    Article  PubMed  CAS  Google Scholar 

  10. Duan, X. et al. Electrocatalytic degradation of perfluoroocatane sulfonate (PFOS) on a 3D graphene-lead dioxide (3DG-PbO2) composite anode: electrode characterization, degradation mechanism and toxicity. Chemosphere 260, 127587 (2020).

    Article  PubMed  CAS  Google Scholar 

  11. Pierpaoli, M. et al. Electrochemical oxidation of PFOA and PFOS in landfill leachates at low and highly boron-doped diamond electrodes. J. Hazard. Mater. 403, 123606 (2021).

    Article  PubMed  CAS  Google Scholar 

  12. Soriano, A., Gorri, D. & Urtiaga, A. Efficient treatment of perfluorohexanoic acid by nanofiltration followed by electrochemical degradation of the NF concentrate. Water Res. 112, 147–156 (2017).

    Article  PubMed  CAS  Google Scholar 

  13. Wang, J. et al. Perfluorooctane sulfonate and perfluorobutane sulfonate removal from water by nanofiltration membrane: the roles of solute concentration, ionic strength, and macromolecular organic foulants. Chem. Eng. J. 332, 787–797 (2018).

    Article  CAS  Google Scholar 

  14. Kwon, B. G. et al. Biodegradation of perfluorooctanesulfonate (PFOS) as an emerging contaminant. Chemosphere 109, 221–225 (2014).

    Article  PubMed  CAS  Google Scholar 

  15. Albert, K., Hsieh, P. Y., Chen, T. H., Hou, C. H. & Hsu, H. Y. Diatom-assisted biomicroreactor targeting the complete removal of perfluorinated compounds. J. Hazard. Mater. 384, 121491 (2020).

    Article  PubMed  CAS  Google Scholar 

  16. Evich, M. G. et al. Per- and polyfluoroalkyl substances in the environment. Science 375, eabg9065 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Winchell, L. J. et al. Per- and polyfluoroalkyl substances thermal destruction at water resource recovery facilities: a state of the science review. Water Environ. Res. 93, 826–843 (2021).

    Article  PubMed  CAS  Google Scholar 

  18. Xiong, X. et al. Complete defluorination of perfluorooctanoic acid (PFOA) by ultrasonic pyrolysis towards zero fluoro-pollution. Water Res. 235, 119829 (2023).

    Article  PubMed  CAS  Google Scholar 

  19. Cheng, J., Vecitis, C. D., Park, H., Mader, B. T. & Hoffmann, M. R. Sonochemical degradation of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in groundwater: kinetic effects of matrix inorganics. Environ. Sci. Technol. 44, 445–450 (2010).

    Article  PubMed  CAS  Google Scholar 

  20. Schaefer, C. E., Andaya, C., Urtiaga, A., McKenzie, E. R. & Higgins, C. P. Electrochemical treatment of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) in groundwater impacted by aqueous film forming foams (AFFFs). J. Hazard. Mater. 295, 170–175 (2015).

    Article  PubMed  CAS  Google Scholar 

  21. Sharma, S., Shetti, N. P., Basu, S., Nadagouda, M. N. & Aminabhavi, T. M. Remediation of per- and polyfluoroalkyls (PFAS) via electrochemical methods. Chem. Eng. J. 430, 132895 (2022).

    Article  CAS  Google Scholar 

  22. Chiang, S. D. et al. Supercritical water oxidation for the destruction of spent media wastes generated from PFAS treatment. J. Hazard. Mater. 460, 132264 (2023).

    Article  PubMed  CAS  Google Scholar 

  23. Li, J., Austin, C., Moore, S., Pinkard, B. R. & Novosselov, I. V. PFOS destruction in a continuous supercritical water oxidation reactor. Chem. Eng. J. 451, 139063 (2023).

    Article  CAS  Google Scholar 

  24. Verma, S., Lee, T., Sahle-Demessie, E., Ateia, M. & Nadagouda, M. N. Recent advances on PFAS degradation via thermal and nonthermal methods. Chem. Eng. J. Adv. 13, 100421 (2023).

    Article  CAS  Google Scholar 

  25. Watanabe, N., Takata, M., Takemine, S. & Yamamoto, K. Thermal mineralization behavior of PFOA, PFHxA, and PFOS during reactivation of granular activated carbon (GAC) in nitrogen atmosphere. Environ. Sci. Pollut. Res. 25, 7200–7205 (2018).

    Article  CAS  Google Scholar 

  26. Wang, F., Lu, X., Li, X.-Y. & Shih, K. Effectiveness and mechanisms of defluorination of perfluorinated alkyl substances by calcium compounds during waste thermal treatment. Environ. Sci. Technol. 49, 5672–5680 (2015).

    Article  PubMed  CAS  Google Scholar 

  27. Alinezhad, A. et al. An investigation of thermal air degradation and pyrolysis of per- and polyfluoroalkyl substances and aqueous film-forming foams in soil. ACS EST Eng. 2, 198–209 (2022).

    Article  CAS  Google Scholar 

  28. Liu, H., Yao, Y. & Samori, P. Taming multiscale structural complexity in porous skeletons: from open framework materials to micro/nanoscaffold architectures. Small Methods 7, e2300468 (2023).

    Article  PubMed  Google Scholar 

  29. McDonald, T. M. et al. Cooperative insertion of CO2 in diamine-appended metal–organic frameworks. Nature 519, 303–308 (2015).

    Article  PubMed  CAS  Google Scholar 

  30. Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013).

    Article  PubMed  Google Scholar 

  31. Cui, Y., Yue, Y., Qian, G. & Chen, B. Luminescent functional metal–organic frameworks. Chem. Rev. 112, 1126–1162 (2012).

    Article  PubMed  CAS  Google Scholar 

  32. Zhou, H. C., Long, J. R. & Yaghi, O. M. Introduction to metal–organic frameworks. Chem. Rev. 112, 673–674 (2012).

    Article  PubMed  CAS  Google Scholar 

  33. Chen, Z., Kirlikovali, K. O., Li, P. & Farha, O. K. Reticular chemistry for highly porous metal–organic frameworks: the chemistry and applications. Acc. Chem. Res. 55, 579–591 (2022).

    Article  PubMed  CAS  Google Scholar 

  34. Herm, Z. R. et al. Separation of hexane isomers in a metal–organic framework with triangular channels. Science 340, 960–964 (2013).

    Article  PubMed  CAS  Google Scholar 

  35. Liang, R. R. et al. A robust pyrazolate metal–organic framework for efficient catalysis of dehydrogenative C–O cross coupling reaction. J. Am. Chem. Soc. 146, 14174–14181 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Wang, K. et al. Pyrazolate-based porphyrinic metal–organic framework with extraordinary base-resistance. J. Am. Chem. Soc. 138, 914–919 (2016).

    Article  PubMed  CAS  Google Scholar 

  37. Rieth, A. J., Wright, A. M. & Dincă, M. Kinetic stability of metal–organic frameworks for corrosive and coordinating gas capture. Nat. Rev. Mater. 4, 708–725 (2019).

    Article  CAS  Google Scholar 

  38. Colombo, V. et al. High thermal and chemical stability in pyrazolate-bridged metal–organic frameworks with exposed metal sites. Chem. Sci. 2, 1311–1319 (2011).

    Article  CAS  Google Scholar 

  39. Maji, T. K., Matsuda, R. & Kitagawa, S. A flexible interpenetrating coordination framework with a bimodal porous functionality. Nat. Mater. 6, 142–148 (2007).

    Article  PubMed  CAS  Google Scholar 

  40. Ok, K. M., Sung, J., Hu, G., Jacobs, R. M. J. & O’Hare, D. TOF-2: a large 1D channel thorium organic framework. J. Am. Chem. Soc. 130, 3762–3763 (2008).

    Article  PubMed  CAS  Google Scholar 

  41. Lü, J. et al. A robust binary supramolecular organic framework (SOF) with high CO2 adsorption and selectivity. J. Am. Chem. Soc. 136, 12828–12831 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Li, R. et al. Efficient removal of per- and polyfluoroalkyl substances from water with zirconium-based metal–organic frameworks. Chem. Mater. 33, 3276–3285 (2021).

    Article  CAS  Google Scholar 

  43. Liu, K. et al. Understanding the adsorption of PFOA on MIL-101(Cr)-based anionic-exchange metal–organic frameworks: comparing DFT calculations with aqueous sorption experiments. Environ. Sci. Technol. 49, 8657–8665 (2015).

    Article  PubMed  CAS  Google Scholar 

  44. Yang, Y., Zheng, Z., Ji, W., Xu, J. & Zhang, X. Insights to perfluorooctanoic acid adsorption micro-mechanism over Fe-based metal organic frameworks: combining computational calculation with response surface methodology. J. Hazard. Mater. 395, 122686 (2020).

    Article  PubMed  CAS  Google Scholar 

  45. Liang, R.-R. et al. Exceptionally high perfluorooctanoic acid uptake in water by a zirconium-based metal–organic framework through synergistic chemical and physical adsorption. J. Am. Chem. Soc. 146, 9811–9818 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Frisch, M. J. et al. Gaussian 16, Revision C.01 (Gaussian Inc., 2016).

  47. Kühne, T. D. et al. CP2K: An electronic structure and molecular dynamics software package - Quickstep: Efficient and accurate electronic structure calculations. J. Chem. Phys. 152, 194103 (2020).

Download references

Acknowledgements

We gratefully acknowledge the financial support from the US Department of Energy, Office of Fossil Energy (grant no. DE-FE0032108). Additional support was provided by the Robert A. Welch Foundation through a Welch Endowed Chair to H.-C.Z (A-0030). We also acknowledge the financial support of the US Department of Energy, Office of Fossil Energy/Pennsylvania State University (grant no. S000655-DOE). Y.F. gratefully acknowledges the support of GWK for funding this project by providing computing time through the Center for Information Services and HPC (ZIH) at TU Dresden.

Author information

Authors and Affiliations

Authors

Contributions

H.-C.Z. conceived the research idea. R.-R.L. performed most of the experiments and analysed the data. Y.F. conducted the calculations. Z.H. and Y.Y. solved the single-crystal data. V.I.B. conducted the solid-state NMR experiments and analysed the data. R.-R.L. and H.-C.Z. wrote the paper. Z.L. and J.R. collected and analysed the NMR data. All authors discussed the results and commented on the paper.

Corresponding author

Correspondence to Hong-Cai Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Lingxin Chen and Mario Wriedt for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

General methods and instruments, Supplementary Figs. 1–39 and Tables 1–3.

Supplementary Data 1

Crystallographic txt file.

Supplementary Data 2

Crystallographic checkcif report.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, RR., Fu, Y., Han, Z. et al. A robust pyrazolate metal–organic framework for integrated perfluorooctanoic acid concentration and degradation. Nat Water 2, 1218–1225 (2024). https://doi.org/10.1038/s44221-024-00343-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44221-024-00343-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing