Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A new look at Earth’s water and energy with SWOT

Abstract

As the planet transitions to a new climate, adapting to the Earth’s changing water cycle remains among the top challenges faced by humanity. The relative stability of climate and water resources over the past millennia allowed humans to build complex societies with established agriculture, infrastructure and economies that today sustain the livelihood of eight billion people. As the planet warms, this steady state of water movement is being altered, and both oceanic and terrestrial components of the global water cycle are undergoing measurable changes that will probably continue. Predicting the new trajectory of Earth’s water in a warming climate begins with observing the entire water supply–demand chain across the planet, from Earth’s largest water reservoir, the ocean, to water storage, use and recycling on land. A recently launched space observatory, called the Surface Water and Ocean Topography (SWOT), is making a timely entrance and addition to the water-observing networks, by providing direct, high-resolution measurements of the water height and volume of nearly all water on the Earth’s surface. Here we link technological advances in wide-swath satellite altimetry and SWOT’s novel measurements of water volume across the planet to scientific innovations for Earth’s water cycle, including studies of changes in the water storage and dynamics in global lakes and rivers, rising seas, ocean energetics and land–ocean exchange, with implications for practical information for water resource managers and climate resilience efforts. We also discuss how SWOT innovations set the stage for future missions and integrated Earth-system approaches within the water science community.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The steady state of the global water cycle and changes over the past three decades.
Fig. 2: Global mean sea level and ocean warming.
Fig. 3: Average latent (evaporative) heat flux from the ocean to the atmosphere during the period 1990–2010.
Fig. 4: Examples of SWOT’s first images based on pre-validated data.
Fig. 5: Conceptual illustration of the SWOT mission measurement system, satellite and ground station systems that acquire satellites’ telemetry, and process and archive the data.
Fig. 6: Example of SWOT water surface elevations over Bangladesh.

Similar content being viewed by others

References

  1. Snyder, C. Evolution of global temperature over the past two million years. Nature 538, 226–228 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Pratap, S. & Markonis, Y. The response of the hydrological cycle to temperature changes in recent and distant climatic history. Prog. Earth Planet. Sci. 9, 30 (2022).

    Article  Google Scholar 

  3. Schmidt, G. A. et al. Overestimate of committed warming. Nature 547, E16–E17 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Milly, P. C. et al. Stationarity is dead: whither water management? Science 319, 573–574 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Morrow, R. et al. Global observations of fine-scale ocean surface topography with the Surface Water and Ocean Topography (SWOT) mission. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00232 (2019).

  6. Gimeno, L., Drumond, A., Nieto, R., Trigo, R. M. & Stohl, A. On the origin of continental precipitation. Geophys. Res. Lett. 37, L13804 (2010).

    Article  Google Scholar 

  7. Gimeno, L. et al. Oceanic and terrestrial sources of continental precipitation. Rev. Geophys. 50, RG4003 (2015).

    Google Scholar 

  8. Rodell, M. et al. The observed state of the water cycle in the early twenty-first century. J. Clim. 28, 8289–8318 (2015).

    Article  Google Scholar 

  9. Schmitt, R. W. The ocean’s role in climate. Oceanogr. 31, 32–40 (2018).

    Article  Google Scholar 

  10. Durack, P. J., Lee, T., Vinogradova, N. T. & Stammer, D. Keeping the lights on for global ocean salinity observation. Nat. Clim. Change 6, 228–231 (2016).

    Article  Google Scholar 

  11. Trenberth, K. E., Smith, L., Qian, T., Dai, A. & Fasullo, J. Estimates of the global water budget and its annual cycle using observational and model data. J. Hydrometeorol. 8, 758–769 (2007).

    Article  Google Scholar 

  12. Weaver, S. J., Ruiz-Barradas, A. & Nigam, S. Pentad evolution of the 1988 drought and 1993 flood over the great plains: an NARR perspective on the atmospheric and terrestrial water balance. J. Clim. 22, 5366–5384 (2009).

    Article  Google Scholar 

  13. Seager, R. & Vecchi, G. A. Greenhouse warming and the 21st century hydro- climate of southwestern North America. Proc. Natl Acad. Sci. USA 107, 21277–21282 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhou, T. & Yu, R.-C. Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. J. Geophys. Res. 10.1029/2004JD005413 (2005).

  15. Chan, S. C. & Misra, V. A diagnosis of the 1979–2005 extreme rainfall events in the Southeastern United States with isentropic moisture tracing. Mon. Weather Rev. 138, 1172–1185 (2010).

    Article  Google Scholar 

  16. Cook, B., Seager, R. & Miller, R. On the causes and dynamics of the early twentieth-century North American Pluvial. J. Clim. 24, 5043–5060 (2011).

    Article  Google Scholar 

  17. Li, L., Li, W. & Barros, A. Atmospheric moisture budget and its regulation of the summer precipitation variability over the Southeastern United States. Clim. Dyn 41, 613–631 (2013).

    Article  CAS  Google Scholar 

  18. Gimeno, L., Nieto, R. & Sori, R. The growing importance of oceanic moisture sources for continental precipitation. Clim. Atmos. Sci 3, 27 (2020).

    Article  Google Scholar 

  19. Vinogradova, N. et al. Satellite salinity observing system: recent discoveries and the way forward. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00243 (2019).

  20. Gimeno, L., Nieto, R., Drumond, A., Castillo, R. & Trigo, R. Influence of the intensification of the major oceanic moisture sources on continental precipitation. Geophys. Res. Lett. 40, 1443–1450 (2013).

    Article  Google Scholar 

  21. Kapnick, S. B. et al. Potential for western US seasonal snowpack prediction. Proc. Natl Acad. Sci. USA 115, 1180–1185 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li, L., Schmitt, R., Ummenhofer, C. & Karnauskas, K. North Atlantic salinity as a predictor of Sahel rainfall. Sci. Adv. 2, e1501588 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Li, L., Schmitt, R. W. & Ummenhofer, C. C. Skillful long-lead prediction of summertime heavy rainfall in the US Midwest from sea surface salinity. Geophys. Res. Lett. 49, e2022GL098554 (2022).

    Article  Google Scholar 

  24. Schmitt, R. W. Salinity and the global water cycle. Oceanogr. 21, 12–19 (2008).

    Article  Google Scholar 

  25. Trenberth, K. E. Changes in precipitation with climate change. Clim. Res. 47, 123–138 (2011).

    Article  Google Scholar 

  26. Durack, P. J., Wijffels, S. E. & Matear, R. J. Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science 336, 455–458 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Vinogradova, N. T. & Ponte, R. M. In search of fingerprints of the recent intensification of the ocean water cycle. J. Clim 30, 5513–5528 (2017).

    Article  Google Scholar 

  28. Greve, P., Gudmundsson, L. & Seneviratne, S. I. Regional scaling of annual mean precipitation and water availability with global temperature change. Earth Syst. Dyn. 9, 227–240 (2018).

    Article  Google Scholar 

  29. Stephens, G. L. et al. Earth’s water reservoirs in a changing climate. Proc. R. Soc. A Math. Phys. Eng. Sci. 476, 20190458 (2020).

    Google Scholar 

  30. Yu, L., Josey, S. A., Bingham, F. M. & Lee, T. Intensification of the global water cycle and evidence from ocean salinity: a synthesis review. Ann. N.Y. Acad. Sci. 1472, 76–94 (2020).

    Article  PubMed  Google Scholar 

  31. Chiang, F., Greve, P., Mazdiyasni, O., Wada, Y. & AghaKouchak, A. Intensified likelihood of concurrent warm and dry months attributed to anthropogenic climate change. Water Resour. Res. 58, e2021WR030411 (2022).

    Article  Google Scholar 

  32. Rodell, M. & Li, B. Changing intensity of hydroclimatic extreme events revealed by GRACE and GRACE-FO. Nat. Water 1, 241–248 (2023).

    Article  Google Scholar 

  33. Yu, L. Connecting subtropical salinity maxima to tropical salinity minima: synchronization between ocean dynamics and the water cycle. Prog. Oceanogr. 219, 103172 (2023).

    Article  Google Scholar 

  34. Huntington, T. G. Evidence for intensification of global water cycle: review and synthesis. J. Hydrol. 319, 83–95 (2006).

    Article  Google Scholar 

  35. IPCC. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).

  36. Skliris, N., Zika, J. D., Nurser, G., Josey, S. A. & Marsh, R. Global water cycle amplifying at less than the Clausius-Clapeyron rate. Sci. Rep. 6, 38752 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sohail, T., Zika, J. D., Irving, D. B. & Church, J. A. Observed poleward freshwater transport since 1970. Nature 602, 617–622 (2022).

    Article  CAS  PubMed  Google Scholar 

  38. Tamisiea, M. E. et al. Impact of self-attraction and loading on the annual cycle in sea level. J. Geophys. Res. 115, C07004 (2010).

    Google Scholar 

  39. Vinogradova, N. T., Ponte, R. M., Tamisiea, M. E., Davis, J. L. & Hill, E. M. Effects of self-attraction and loading on annual variation of ocean bottom pressure. J. Geophys. Res. 115, C06025 (2010).

    Google Scholar 

  40. Piecuch, C. G., Dangendorf, S., Ponte, R. M. & Marcos, M. Annual sea level changes on the North American Northeast coast: influence of local winds and barotropic motions. J. Clim. 29, 4801–4816 (2016).

    Article  Google Scholar 

  41. Calafat, F. M., Wahl, T., Lindsten, F., Williams, J. & Frajka-Williams, E. Coherent modulation of the sea-level annual cycle in the United States by Atlantic Rossby waves. Nat. Commun. 9, 2571 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ray, R. D., Loomis, B. D. & Zlotnicki, V. The mean seasonal cycle in relative sea level from satellite altimetry and gravimetry. J. Geodesy 95, 80 (2021).

    Article  Google Scholar 

  43. Vinogradova, N. & Hamlington, B. Sea level science and applications support coastal resilience. EOS (29 June 2022).

  44. Hamlington, B. D., Willis, J. K. & Vinogradova, N. The emerging golden age of satellite altimetry to prepare humanity for rising seas. Earths Future 11, e2023EF003673 (2023).

    Article  Google Scholar 

  45. von Schuckmann, K. et al. Heat stored in the Earth system 1960–2020: where does the energy go? Earth Syst. Sci. Data 15, 1675–1709 (2023).

    Article  Google Scholar 

  46. Loeb, N. G. et al. Satellite and ocean data reveal marked increase in Earth’s heating rate. Geophys. Res. Lett. 48, e2021GL093047 (2021).

    Article  Google Scholar 

  47. Johnson, G. C. et al. Closure of Earth’s global seasonal cycle of energy storage. Surv. Geophys. https://doi.org/10.1007/s10712-023-09797-6 (2023).

  48. Milliman, J. D. & Farnsworth, K. L. River Discharge to the Coastal Ocean: a Global Synthesis (Cambridge Univ. Press, 2013).

  49. Su, L. et al. Long-term trends in global river flow and the causal relationships between river flow and ocean signals. J. Hydrol. 563, 818–833 (2018).

    Article  Google Scholar 

  50. Feng, D. et al. Recent changes to Arctic river discharge. Nat. Commun. 12, 6917 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rawlins, M. A. et al. Analysis of the Arctic system for freshwater cycle intensification: observations and expectations. J. Clim. 23, 5715–5737 (2010).

    Article  Google Scholar 

  52. Sperna Weiland, F., Van Beek, L., Kwadijk, J. & Bierkens, M. Global patterns of change in discharge regimes for 2100. Hydrol. Earth Syst. Sci. 16, 1047–1062 (2012).

    Article  Google Scholar 

  53. van Vliet, M. T. et al. Global river discharge and water temperature under climate change. Global Environ. Change 23, 450–464 (2013).

    Article  Google Scholar 

  54. Wang, J. et al. Recent global decline in endorheic basin water storages. Nat. Geosci. 11, 926–932 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hannah, D. M. et al. Large-scale river flow archives: importance, current status and future needs. Hydrol. Process. 25, 1191–1200 (2011).

    Article  Google Scholar 

  56. Fasullo, J. T. & Trenberth, K. E. The annual cycle of the energy budget. Part I: Global mean and land-ocean exchanges. J. Clim. 21, 2297–2312 (2008).

    Article  Google Scholar 

  57. Fasullo, J. T. & Trenberth, K. E. The annual cycle of the energy budget. Part II: Meridional structures and poleward transports. J. Clim. 21, 2313–2325 (2008).

    Article  Google Scholar 

  58. Trenberth, K. E., Zhang, Y., Fasullo, J. T. & Cheng, L. Observation-based estimates of global and basin ocean meridional heat transport time series. J. Clim. 32, 4567–4583 (2019).

    Article  Google Scholar 

  59. Loeb, N. G. et al. Evaluating twenty-year trends in earth’s energy flows from observations and reanalyses. J. Geophys. Res. Atmos. 127, e2022JD036686 (2022).

    Article  Google Scholar 

  60. Minobe, S., Kuwano-Yoshida, A., Komori, N., Xie, S.-P. & Small, R. J. Influence of the Gulf Stream on the troposphere. Nature 452, 206–209 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Nakamura, H., Sampe, T., Goto, A., Ohfuchi, W. & Xie, S.-P. On the importance of midlatitude oceanic frontal zones for the mean state and dominant variability in the tropospheric circulation. Geophys. Res. Lett. https://doi.org/10.1029/2008GL034010 (2008).

  62. Kuwano-Yoshida, A., Minobe, S. & Xie, S.-P. Precipitation response to the Gulf Stream in an atmospheric GCM. J. Clim. 23, 1081–1102 (2017).

    Article  Google Scholar 

  63. Smirnov, D., Newman, M., Alexander, M. A., Kwon, Y.-O. & Frankignoul, C. Investigating the local atmospheric response to a realistic shift in the Oyashio sea surface temperature front. J. Clim. 28, 1126–1147 (2014).

    Article  Google Scholar 

  64. Parfitt, R., Czaja, A., Minobe, S. & Kuwano-Yoshida, A. The atmospheric frontal response to SST perturbations in the Gulf Stream region. Geophys. Res. Lett. 43, 2299–2306 (2016).

    Article  Google Scholar 

  65. Kuwano-Yoshida, A. & Minobe, S. Storm-track response to SST fronts in the Northwestern Pacific region in an AGCM. J. Clim 30, 1081–1102 (2017).

    Article  Google Scholar 

  66. Zhang, C. et al. North Pacific storm track response to the mesoscale SST in a global high-resolution atmospheric model. Clim. Dyn. 55, 1597–1611 (2020).

    Article  Google Scholar 

  67. Griffies, S. M. et al. Impacts on ocean heat from transient mesoscale eddies in a hierarchy of climate models. J. Clim. 28, 952–977 (2015).

    Article  Google Scholar 

  68. Fu, L.-L. et al. The Surface Water and Ocean Topography mission: a break-through in radar remote sensing of the ocean and land surface water. Geophys. Res. Lett. 51, e2023GL107652 (2024).

    Article  Google Scholar 

  69. Alsdorf, D. E. & Lettenmaier, D. P. Tracking fresh water from space. Science 301, 1491–1494 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Wang, J. et al. On the development of SWOT in situ calibration/validation for short-wavelength ocean topography. J. Atmos. Oceanic Technol. 39, 595–617 (2022).

    Article  Google Scholar 

  71. Peral, E. et al. KaRIn, the Ka-band radar interferometer of the SWOT mission: design and in-flight performance. IEEE Trans. Geosci. Remote Sens. 62, 1–27 (2024).

    Article  Google Scholar 

  72. Goldstein, R. M., Engelhardt, H., Kamb, B. & Frolich, R. M. Satellite radar interferometry for monitoring ice sheet motion: application to an Antarctic ice stream. Science 262, 1525–1530 (1993).

    Article  CAS  PubMed  Google Scholar 

  73. Farr, T. G. et al. The shuttle radar topography mission. Rev. Geophys. https://doi.org/10.1029/2005RG000183 (2007).

  74. Rodriguez, E., Morris, C. S. & Belz, J. E. A global assessment of the SRTM performance. Photogramm. Eng. Remote Sens. 72, 249–260 (2006).

    Article  Google Scholar 

  75. Fu, L.-L. & Rodriguez, R. High-Resolution Measurement of Ocean Surface Topography by Radar Interferometry for Oceanographic and Geophysical Applications. AGU Geophysical Monograph 150, IUGG Vol. 19: State of the Planet: Frontiers and Challenges in Geophysics (AGU, 2004).

  76. Rodriguez, E. et al. in Satellite Altimetry Over Oceans and Land Surfaces Ch. 2, 71–112 (CRC Press, 2017).

  77. Landerer, F. W. & Swenson, S. C. Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour. Res. https://doi.org/10.1029/2011WR011453 (2012).

  78. Humphrey, V., Rodell, M. & Eicker, A. Using satellite-based terrestrial water storage data: a review. Surv. Geophys. 44, 1489–1517 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Allen, G. H. & Pavelsky, T. M. Global extent of rivers and streams. Science 361, 585–588 (2018).

    Article  CAS  PubMed  Google Scholar 

  80. Dethier, E. N., Renshaw, C. E. & Magilligan, F. J. Rapid changes to global river suspended sediment flux by humans. Science 376, 1447–1452 (2022).

    Article  CAS  PubMed  Google Scholar 

  81. Yang, X., Pavelsky, T. M. & Allen, G. H. The past and future of global river ice. Nature 577, 69–73 (2020).

    Article  CAS  PubMed  Google Scholar 

  82. Duan, W. et al. Recent advancement in remote sensing technology for hydrology analysis and water resources management. Remote Sens 13, 1097 (2021).

    Article  Google Scholar 

  83. Huang, W., Duan, W. & Chen, Y. Unravelling lake water storage change in Central Asia: rapid decrease in tail-end lakes and increasing risks to water supply. J. Hydrol. 614, 128546 (2022).

    Article  Google Scholar 

  84. Smith, L. C. Satellite remote sensing of river inundation area, stage and discharge: a review. Hydrol. Process. 11, 1427–1439 (1997).

    Article  Google Scholar 

  85. Bjerklie, D. M., Moller, D., Smith, L. C. & Dingman, S. L. Estimating discharge in rivers using remotely sensed hydraulic information. J. Hydrol. 309, 191–209 (2005).

    Article  Google Scholar 

  86. Smith, L. C. & Pavelsky, T. M. Estimation of river discharge, propagation speed and hydraulic geometry from space: Lena River, Siberia. Water Resour. Res. https://doi.org/10.1029/2007WR006133 (2008).

  87. Gleason, C. J. & Durand, M. T. Remote sensing of river discharge: a review and a framing for the discipline. Remote Sens. 12, 1107 (2020).

    Article  Google Scholar 

  88. Frasson, R. P. D. M. et al. Exploring the factors controlling the error characteristics of the Surface Water and Ocean Topography mission discharge estimates. Water Resour. Res. 57, e2020WR028519 (2021).

    Article  Google Scholar 

  89. Altenau, E. H. et al. The Surface Water and Ocean Topography (SWOT) mission River Database (SWORD): a global river network for satellite data products. Water Resour. Res. 57, e2021WR030054 (2021).

    Article  Google Scholar 

  90. Durand, M. et al. A framework for estimating global river discharge from the Surface Water and Ocean Topography satellite mission. Water Resour. Res. 59, e2021WR031614 (2023).

    Article  Google Scholar 

  91. Hakuba, M. Z. et al. Trends and variability in Earth’s energy imbalance and ocean heat uptake since 2005. Surv. Geophys. https://doi.org/10.1007/s10712-024-09849-5 (2024).

  92. Cheng, L. et al. Ocean heat content in 2023. Nat. Rev. Earth Environ 5, 232–234 (2024).

    Article  Google Scholar 

  93. Devitt, L., Neal, J., Wagener, T. & Coxon, G. Uncertainty in the extreme flood magnitude estimates of large-scale flood hazard models. Environ. Res. Lett. 16, 064013 (2021).

    Article  Google Scholar 

  94. Cai, X., Yang, Z.-L., David, C. H., Niu, G.-Y. & Rodell, M. Hydrological evaluation of the Noah-MP land surface model for the Mississippi River basin. J. Geophys. Res. Atmos. 119, 23–38 (2014).

    Article  Google Scholar 

  95. Pedinotti, V., Boone, A., Ricci, S., Biancamaria, S. & Mognard, N. Assimilation of satellite data to optimize large-scale hydrological model parameters: a case study for the SWOT mission. Hydrol. Earth Syst. Sci. 18, 4485–4507 (2014).

    Article  Google Scholar 

  96. Wongchuig-Correa, S., de Paiva, R. C. D., Biancamaria, S. & Collischonn, W. Assimilation of future SWOT-based river elevations, surface extent observations and discharge estimations into uncertain global hydrological models. J. Hydrol. 590, 125473 (2020).

    Article  Google Scholar 

  97. Swain, D. et al. Increased flood exposure due to climate change and population growth in the United States. Earths Future 8, e2020EF001778 (2020).

    Article  Google Scholar 

  98. Wang, J., Biancamaria, S. & Trudel, M. SWOTs Capabilities and Early Science Results for Global Lakes and Reservoirs (SWOT, 2024); https://swotst.aviso.altimetry.fr/fileadmin/user_upload/SWOTST2024/20240617/6_Mon_AM_Wang_Jida_LakesReservoirs-opt2.pdf

  99. Cooley, S. W., Ryan, J. C. & Smith, L. C. Human alteration of global surface water storage variability. Nature 591, 78–81 (2021).

    Article  CAS  PubMed  Google Scholar 

  100. Oubanas, H., Gleason, C. & Bates, P. SWOT River Discharge: The First Glimpses (SWOT, 2024); https://swotst.aviso.altimetry.fr/fileadmin/userupload/SWOTST2024/20240617/MonAMGleasonColinDischarge.pdf

  101. Hossain, F. et al. Building user-readiness for satellite Earth observing missions: the case of the Surface Water and Ocean Topography (SWOT) mission. AGU Adv. 3, e2022AV000680 (2022).

    Article  Google Scholar 

  102. Brown, M. & Escobar, V. NASA’s Early Adopter program links satellite data to decision making. Remote Sens. 11, 406 (2019).

    Article  Google Scholar 

  103. Nair, A. S., Kumar, N., Indu, J. & Vivek, B. Monitoring lake levels from space: preliminary analysis with SWOT. Front. Water https://doi.org/10.3389/frwa.2021.717852 (2021).

  104. Nair, A. S., Verma, K., Karmakar, S., Ghosh, S. & Indu, J. Exploring the potential of SWOT mission for reservoir monitoring in Mahanadi basin. Adv. Space Res. 69, 1481–1493 (2022).

    Article  Google Scholar 

  105. Soman, M. K. & Indu, J. Sentinel-1 based inland water dynamics mapping system. Environ. Model. Softw. 149, 105305 (2022).

    Article  Google Scholar 

  106. Khan, S. et al. Tracking flood volume changes in the developing world. Water Resources IMPACT 24, 27–29 (2022).

    Google Scholar 

  107. Breasted, J. H. Ancient Times: A History of the Early World (The Athenaeum Press, 1916).

  108. Akanda, A., Freeman, S. & Placht, M. The Tigris-Euphrates river basin: mediating a path towards regional water stability. The Fletcher School Journal for issues related to Southwest Asia and Islamic Civilization 31, 1–12 (2007); https://ciaotest.cc.columbia.edu/olj/aln/alnspring07/alnspring07g.pdf (2007).

  109. Guarasci, B. The National Park: reviving Eden in Iraqas marshes. Arab Studies J 23, 128–153 (2015).

    Google Scholar 

  110. Hossain, F., Alwash, A., Minocha, S. & Eldardiry, H. Restoring the Mesopotamian Rivers for future generations: a practical approach. Water Resour. Res. 59, e2023WR034514 (2023).

    Article  Google Scholar 

  111. Willis, J. K., Hamlington, B. D. & Fournier, S. Global mean sea level time series, trajectory and extrapolation [dataset]. Zenodo https://doi.org/10.5281/zenodo.7702315 (2024).

  112. Yu, L. & Weller, R. A. Objectively analyzed air-sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc. 88, 527–539 (2007).

    Article  Google Scholar 

  113. Lee, J. How Deep Was Death Valley’s Temporary Lake? (NASA Earth Observatory, 2024); https://earthobservatory.nasa.gov/images/152645/how-deep-was-death-valleys-temporary-lake

  114. Wang, J., Suzuki, S. & Archer, M. SWOT’s Sea Surface Height Anomaly (NASA Jet Propulsion Laboratory, 2024); https://svs.gsfc.nasa.gov/31308/

Download references

Acknowledgements

T.M.P., J.T.F. and F.H. were supported by grants from the NASA Physical Oceanography programme (80NSSC21K0713 and 80NSSC22K0918). The research by L.-L.F. was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA (80NM0018D0004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadya T. Vinogradova.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Weili Duan, Lian Feng and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinogradova, N.T., Pavelsky, T.M., Farrar, J.T. et al. A new look at Earth’s water and energy with SWOT. Nat Water 3, 27–37 (2025). https://doi.org/10.1038/s44221-024-00372-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44221-024-00372-w

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene