Abstract
As the planet transitions to a new climate, adapting to the Earth’s changing water cycle remains among the top challenges faced by humanity. The relative stability of climate and water resources over the past millennia allowed humans to build complex societies with established agriculture, infrastructure and economies that today sustain the livelihood of eight billion people. As the planet warms, this steady state of water movement is being altered, and both oceanic and terrestrial components of the global water cycle are undergoing measurable changes that will probably continue. Predicting the new trajectory of Earth’s water in a warming climate begins with observing the entire water supply–demand chain across the planet, from Earth’s largest water reservoir, the ocean, to water storage, use and recycling on land. A recently launched space observatory, called the Surface Water and Ocean Topography (SWOT), is making a timely entrance and addition to the water-observing networks, by providing direct, high-resolution measurements of the water height and volume of nearly all water on the Earth’s surface. Here we link technological advances in wide-swath satellite altimetry and SWOT’s novel measurements of water volume across the planet to scientific innovations for Earth’s water cycle, including studies of changes in the water storage and dynamics in global lakes and rivers, rising seas, ocean energetics and land–ocean exchange, with implications for practical information for water resource managers and climate resilience efforts. We also discuss how SWOT innovations set the stage for future missions and integrated Earth-system approaches within the water science community.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
118,99 € per year
only 9,92 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
References
Snyder, C. Evolution of global temperature over the past two million years. Nature 538, 226–228 (2016).
Pratap, S. & Markonis, Y. The response of the hydrological cycle to temperature changes in recent and distant climatic history. Prog. Earth Planet. Sci. 9, 30 (2022).
Schmidt, G. A. et al. Overestimate of committed warming. Nature 547, E16–E17 (2017).
Milly, P. C. et al. Stationarity is dead: whither water management? Science 319, 573–574 (2008).
Morrow, R. et al. Global observations of fine-scale ocean surface topography with the Surface Water and Ocean Topography (SWOT) mission. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00232 (2019).
Gimeno, L., Drumond, A., Nieto, R., Trigo, R. M. & Stohl, A. On the origin of continental precipitation. Geophys. Res. Lett. 37, L13804 (2010).
Gimeno, L. et al. Oceanic and terrestrial sources of continental precipitation. Rev. Geophys. 50, RG4003 (2015).
Rodell, M. et al. The observed state of the water cycle in the early twenty-first century. J. Clim. 28, 8289–8318 (2015).
Schmitt, R. W. The ocean’s role in climate. Oceanogr. 31, 32–40 (2018).
Durack, P. J., Lee, T., Vinogradova, N. T. & Stammer, D. Keeping the lights on for global ocean salinity observation. Nat. Clim. Change 6, 228–231 (2016).
Trenberth, K. E., Smith, L., Qian, T., Dai, A. & Fasullo, J. Estimates of the global water budget and its annual cycle using observational and model data. J. Hydrometeorol. 8, 758–769 (2007).
Weaver, S. J., Ruiz-Barradas, A. & Nigam, S. Pentad evolution of the 1988 drought and 1993 flood over the great plains: an NARR perspective on the atmospheric and terrestrial water balance. J. Clim. 22, 5366–5384 (2009).
Seager, R. & Vecchi, G. A. Greenhouse warming and the 21st century hydro- climate of southwestern North America. Proc. Natl Acad. Sci. USA 107, 21277–21282 (2010).
Zhou, T. & Yu, R.-C. Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. J. Geophys. Res. 10.1029/2004JD005413 (2005).
Chan, S. C. & Misra, V. A diagnosis of the 1979–2005 extreme rainfall events in the Southeastern United States with isentropic moisture tracing. Mon. Weather Rev. 138, 1172–1185 (2010).
Cook, B., Seager, R. & Miller, R. On the causes and dynamics of the early twentieth-century North American Pluvial. J. Clim. 24, 5043–5060 (2011).
Li, L., Li, W. & Barros, A. Atmospheric moisture budget and its regulation of the summer precipitation variability over the Southeastern United States. Clim. Dyn 41, 613–631 (2013).
Gimeno, L., Nieto, R. & Sori, R. The growing importance of oceanic moisture sources for continental precipitation. Clim. Atmos. Sci 3, 27 (2020).
Vinogradova, N. et al. Satellite salinity observing system: recent discoveries and the way forward. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00243 (2019).
Gimeno, L., Nieto, R., Drumond, A., Castillo, R. & Trigo, R. Influence of the intensification of the major oceanic moisture sources on continental precipitation. Geophys. Res. Lett. 40, 1443–1450 (2013).
Kapnick, S. B. et al. Potential for western US seasonal snowpack prediction. Proc. Natl Acad. Sci. USA 115, 1180–1185 (2018).
Li, L., Schmitt, R., Ummenhofer, C. & Karnauskas, K. North Atlantic salinity as a predictor of Sahel rainfall. Sci. Adv. 2, e1501588 (2016).
Li, L., Schmitt, R. W. & Ummenhofer, C. C. Skillful long-lead prediction of summertime heavy rainfall in the US Midwest from sea surface salinity. Geophys. Res. Lett. 49, e2022GL098554 (2022).
Schmitt, R. W. Salinity and the global water cycle. Oceanogr. 21, 12–19 (2008).
Trenberth, K. E. Changes in precipitation with climate change. Clim. Res. 47, 123–138 (2011).
Durack, P. J., Wijffels, S. E. & Matear, R. J. Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science 336, 455–458 (2012).
Vinogradova, N. T. & Ponte, R. M. In search of fingerprints of the recent intensification of the ocean water cycle. J. Clim 30, 5513–5528 (2017).
Greve, P., Gudmundsson, L. & Seneviratne, S. I. Regional scaling of annual mean precipitation and water availability with global temperature change. Earth Syst. Dyn. 9, 227–240 (2018).
Stephens, G. L. et al. Earth’s water reservoirs in a changing climate. Proc. R. Soc. A Math. Phys. Eng. Sci. 476, 20190458 (2020).
Yu, L., Josey, S. A., Bingham, F. M. & Lee, T. Intensification of the global water cycle and evidence from ocean salinity: a synthesis review. Ann. N.Y. Acad. Sci. 1472, 76–94 (2020).
Chiang, F., Greve, P., Mazdiyasni, O., Wada, Y. & AghaKouchak, A. Intensified likelihood of concurrent warm and dry months attributed to anthropogenic climate change. Water Resour. Res. 58, e2021WR030411 (2022).
Rodell, M. & Li, B. Changing intensity of hydroclimatic extreme events revealed by GRACE and GRACE-FO. Nat. Water 1, 241–248 (2023).
Yu, L. Connecting subtropical salinity maxima to tropical salinity minima: synchronization between ocean dynamics and the water cycle. Prog. Oceanogr. 219, 103172 (2023).
Huntington, T. G. Evidence for intensification of global water cycle: review and synthesis. J. Hydrol. 319, 83–95 (2006).
IPCC. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).
Skliris, N., Zika, J. D., Nurser, G., Josey, S. A. & Marsh, R. Global water cycle amplifying at less than the Clausius-Clapeyron rate. Sci. Rep. 6, 38752 (2016).
Sohail, T., Zika, J. D., Irving, D. B. & Church, J. A. Observed poleward freshwater transport since 1970. Nature 602, 617–622 (2022).
Tamisiea, M. E. et al. Impact of self-attraction and loading on the annual cycle in sea level. J. Geophys. Res. 115, C07004 (2010).
Vinogradova, N. T., Ponte, R. M., Tamisiea, M. E., Davis, J. L. & Hill, E. M. Effects of self-attraction and loading on annual variation of ocean bottom pressure. J. Geophys. Res. 115, C06025 (2010).
Piecuch, C. G., Dangendorf, S., Ponte, R. M. & Marcos, M. Annual sea level changes on the North American Northeast coast: influence of local winds and barotropic motions. J. Clim. 29, 4801–4816 (2016).
Calafat, F. M., Wahl, T., Lindsten, F., Williams, J. & Frajka-Williams, E. Coherent modulation of the sea-level annual cycle in the United States by Atlantic Rossby waves. Nat. Commun. 9, 2571 (2018).
Ray, R. D., Loomis, B. D. & Zlotnicki, V. The mean seasonal cycle in relative sea level from satellite altimetry and gravimetry. J. Geodesy 95, 80 (2021).
Vinogradova, N. & Hamlington, B. Sea level science and applications support coastal resilience. EOS (29 June 2022).
Hamlington, B. D., Willis, J. K. & Vinogradova, N. The emerging golden age of satellite altimetry to prepare humanity for rising seas. Earths Future 11, e2023EF003673 (2023).
von Schuckmann, K. et al. Heat stored in the Earth system 1960–2020: where does the energy go? Earth Syst. Sci. Data 15, 1675–1709 (2023).
Loeb, N. G. et al. Satellite and ocean data reveal marked increase in Earth’s heating rate. Geophys. Res. Lett. 48, e2021GL093047 (2021).
Johnson, G. C. et al. Closure of Earth’s global seasonal cycle of energy storage. Surv. Geophys. https://doi.org/10.1007/s10712-023-09797-6 (2023).
Milliman, J. D. & Farnsworth, K. L. River Discharge to the Coastal Ocean: a Global Synthesis (Cambridge Univ. Press, 2013).
Su, L. et al. Long-term trends in global river flow and the causal relationships between river flow and ocean signals. J. Hydrol. 563, 818–833 (2018).
Feng, D. et al. Recent changes to Arctic river discharge. Nat. Commun. 12, 6917 (2021).
Rawlins, M. A. et al. Analysis of the Arctic system for freshwater cycle intensification: observations and expectations. J. Clim. 23, 5715–5737 (2010).
Sperna Weiland, F., Van Beek, L., Kwadijk, J. & Bierkens, M. Global patterns of change in discharge regimes for 2100. Hydrol. Earth Syst. Sci. 16, 1047–1062 (2012).
van Vliet, M. T. et al. Global river discharge and water temperature under climate change. Global Environ. Change 23, 450–464 (2013).
Wang, J. et al. Recent global decline in endorheic basin water storages. Nat. Geosci. 11, 926–932 (2018).
Hannah, D. M. et al. Large-scale river flow archives: importance, current status and future needs. Hydrol. Process. 25, 1191–1200 (2011).
Fasullo, J. T. & Trenberth, K. E. The annual cycle of the energy budget. Part I: Global mean and land-ocean exchanges. J. Clim. 21, 2297–2312 (2008).
Fasullo, J. T. & Trenberth, K. E. The annual cycle of the energy budget. Part II: Meridional structures and poleward transports. J. Clim. 21, 2313–2325 (2008).
Trenberth, K. E., Zhang, Y., Fasullo, J. T. & Cheng, L. Observation-based estimates of global and basin ocean meridional heat transport time series. J. Clim. 32, 4567–4583 (2019).
Loeb, N. G. et al. Evaluating twenty-year trends in earth’s energy flows from observations and reanalyses. J. Geophys. Res. Atmos. 127, e2022JD036686 (2022).
Minobe, S., Kuwano-Yoshida, A., Komori, N., Xie, S.-P. & Small, R. J. Influence of the Gulf Stream on the troposphere. Nature 452, 206–209 (2008).
Nakamura, H., Sampe, T., Goto, A., Ohfuchi, W. & Xie, S.-P. On the importance of midlatitude oceanic frontal zones for the mean state and dominant variability in the tropospheric circulation. Geophys. Res. Lett. https://doi.org/10.1029/2008GL034010 (2008).
Kuwano-Yoshida, A., Minobe, S. & Xie, S.-P. Precipitation response to the Gulf Stream in an atmospheric GCM. J. Clim. 23, 1081–1102 (2017).
Smirnov, D., Newman, M., Alexander, M. A., Kwon, Y.-O. & Frankignoul, C. Investigating the local atmospheric response to a realistic shift in the Oyashio sea surface temperature front. J. Clim. 28, 1126–1147 (2014).
Parfitt, R., Czaja, A., Minobe, S. & Kuwano-Yoshida, A. The atmospheric frontal response to SST perturbations in the Gulf Stream region. Geophys. Res. Lett. 43, 2299–2306 (2016).
Kuwano-Yoshida, A. & Minobe, S. Storm-track response to SST fronts in the Northwestern Pacific region in an AGCM. J. Clim 30, 1081–1102 (2017).
Zhang, C. et al. North Pacific storm track response to the mesoscale SST in a global high-resolution atmospheric model. Clim. Dyn. 55, 1597–1611 (2020).
Griffies, S. M. et al. Impacts on ocean heat from transient mesoscale eddies in a hierarchy of climate models. J. Clim. 28, 952–977 (2015).
Fu, L.-L. et al. The Surface Water and Ocean Topography mission: a break-through in radar remote sensing of the ocean and land surface water. Geophys. Res. Lett. 51, e2023GL107652 (2024).
Alsdorf, D. E. & Lettenmaier, D. P. Tracking fresh water from space. Science 301, 1491–1494 (2003).
Wang, J. et al. On the development of SWOT in situ calibration/validation for short-wavelength ocean topography. J. Atmos. Oceanic Technol. 39, 595–617 (2022).
Peral, E. et al. KaRIn, the Ka-band radar interferometer of the SWOT mission: design and in-flight performance. IEEE Trans. Geosci. Remote Sens. 62, 1–27 (2024).
Goldstein, R. M., Engelhardt, H., Kamb, B. & Frolich, R. M. Satellite radar interferometry for monitoring ice sheet motion: application to an Antarctic ice stream. Science 262, 1525–1530 (1993).
Farr, T. G. et al. The shuttle radar topography mission. Rev. Geophys. https://doi.org/10.1029/2005RG000183 (2007).
Rodriguez, E., Morris, C. S. & Belz, J. E. A global assessment of the SRTM performance. Photogramm. Eng. Remote Sens. 72, 249–260 (2006).
Fu, L.-L. & Rodriguez, R. High-Resolution Measurement of Ocean Surface Topography by Radar Interferometry for Oceanographic and Geophysical Applications. AGU Geophysical Monograph 150, IUGG Vol. 19: State of the Planet: Frontiers and Challenges in Geophysics (AGU, 2004).
Rodriguez, E. et al. in Satellite Altimetry Over Oceans and Land Surfaces Ch. 2, 71–112 (CRC Press, 2017).
Landerer, F. W. & Swenson, S. C. Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour. Res. https://doi.org/10.1029/2011WR011453 (2012).
Humphrey, V., Rodell, M. & Eicker, A. Using satellite-based terrestrial water storage data: a review. Surv. Geophys. 44, 1489–1517 (2023).
Allen, G. H. & Pavelsky, T. M. Global extent of rivers and streams. Science 361, 585–588 (2018).
Dethier, E. N., Renshaw, C. E. & Magilligan, F. J. Rapid changes to global river suspended sediment flux by humans. Science 376, 1447–1452 (2022).
Yang, X., Pavelsky, T. M. & Allen, G. H. The past and future of global river ice. Nature 577, 69–73 (2020).
Duan, W. et al. Recent advancement in remote sensing technology for hydrology analysis and water resources management. Remote Sens 13, 1097 (2021).
Huang, W., Duan, W. & Chen, Y. Unravelling lake water storage change in Central Asia: rapid decrease in tail-end lakes and increasing risks to water supply. J. Hydrol. 614, 128546 (2022).
Smith, L. C. Satellite remote sensing of river inundation area, stage and discharge: a review. Hydrol. Process. 11, 1427–1439 (1997).
Bjerklie, D. M., Moller, D., Smith, L. C. & Dingman, S. L. Estimating discharge in rivers using remotely sensed hydraulic information. J. Hydrol. 309, 191–209 (2005).
Smith, L. C. & Pavelsky, T. M. Estimation of river discharge, propagation speed and hydraulic geometry from space: Lena River, Siberia. Water Resour. Res. https://doi.org/10.1029/2007WR006133 (2008).
Gleason, C. J. & Durand, M. T. Remote sensing of river discharge: a review and a framing for the discipline. Remote Sens. 12, 1107 (2020).
Frasson, R. P. D. M. et al. Exploring the factors controlling the error characteristics of the Surface Water and Ocean Topography mission discharge estimates. Water Resour. Res. 57, e2020WR028519 (2021).
Altenau, E. H. et al. The Surface Water and Ocean Topography (SWOT) mission River Database (SWORD): a global river network for satellite data products. Water Resour. Res. 57, e2021WR030054 (2021).
Durand, M. et al. A framework for estimating global river discharge from the Surface Water and Ocean Topography satellite mission. Water Resour. Res. 59, e2021WR031614 (2023).
Hakuba, M. Z. et al. Trends and variability in Earth’s energy imbalance and ocean heat uptake since 2005. Surv. Geophys. https://doi.org/10.1007/s10712-024-09849-5 (2024).
Cheng, L. et al. Ocean heat content in 2023. Nat. Rev. Earth Environ 5, 232–234 (2024).
Devitt, L., Neal, J., Wagener, T. & Coxon, G. Uncertainty in the extreme flood magnitude estimates of large-scale flood hazard models. Environ. Res. Lett. 16, 064013 (2021).
Cai, X., Yang, Z.-L., David, C. H., Niu, G.-Y. & Rodell, M. Hydrological evaluation of the Noah-MP land surface model for the Mississippi River basin. J. Geophys. Res. Atmos. 119, 23–38 (2014).
Pedinotti, V., Boone, A., Ricci, S., Biancamaria, S. & Mognard, N. Assimilation of satellite data to optimize large-scale hydrological model parameters: a case study for the SWOT mission. Hydrol. Earth Syst. Sci. 18, 4485–4507 (2014).
Wongchuig-Correa, S., de Paiva, R. C. D., Biancamaria, S. & Collischonn, W. Assimilation of future SWOT-based river elevations, surface extent observations and discharge estimations into uncertain global hydrological models. J. Hydrol. 590, 125473 (2020).
Swain, D. et al. Increased flood exposure due to climate change and population growth in the United States. Earths Future 8, e2020EF001778 (2020).
Wang, J., Biancamaria, S. & Trudel, M. SWOT’s Capabilities and Early Science Results for Global Lakes and Reservoirs (SWOT, 2024); https://swotst.aviso.altimetry.fr/fileadmin/user_upload/SWOTST2024/20240617/6_Mon_AM_Wang_Jida_LakesReservoirs-opt2.pdf
Cooley, S. W., Ryan, J. C. & Smith, L. C. Human alteration of global surface water storage variability. Nature 591, 78–81 (2021).
Oubanas, H., Gleason, C. & Bates, P. SWOT River Discharge: The First Glimpses (SWOT, 2024); https://swotst.aviso.altimetry.fr/fileadmin/userupload/SWOTST2024/20240617/MonAMGleasonColinDischarge.pdf
Hossain, F. et al. Building user-readiness for satellite Earth observing missions: the case of the Surface Water and Ocean Topography (SWOT) mission. AGU Adv. 3, e2022AV000680 (2022).
Brown, M. & Escobar, V. NASA’s Early Adopter program links satellite data to decision making. Remote Sens. 11, 406 (2019).
Nair, A. S., Kumar, N., Indu, J. & Vivek, B. Monitoring lake levels from space: preliminary analysis with SWOT. Front. Water https://doi.org/10.3389/frwa.2021.717852 (2021).
Nair, A. S., Verma, K., Karmakar, S., Ghosh, S. & Indu, J. Exploring the potential of SWOT mission for reservoir monitoring in Mahanadi basin. Adv. Space Res. 69, 1481–1493 (2022).
Soman, M. K. & Indu, J. Sentinel-1 based inland water dynamics mapping system. Environ. Model. Softw. 149, 105305 (2022).
Khan, S. et al. Tracking flood volume changes in the developing world. Water Resources IMPACT 24, 27–29 (2022).
Breasted, J. H. Ancient Times: A History of the Early World (The Athenaeum Press, 1916).
Akanda, A., Freeman, S. & Placht, M. The Tigris-Euphrates river basin: mediating a path towards regional water stability. The Fletcher School Journal for issues related to Southwest Asia and Islamic Civilization 31, 1–12 (2007); https://ciaotest.cc.columbia.edu/olj/aln/alnspring07/alnspring07g.pdf (2007).
Guarasci, B. The National Park: reviving Eden in Iraqas marshes. Arab Studies J 23, 128–153 (2015).
Hossain, F., Alwash, A., Minocha, S. & Eldardiry, H. Restoring the Mesopotamian Rivers for future generations: a practical approach. Water Resour. Res. 59, e2023WR034514 (2023).
Willis, J. K., Hamlington, B. D. & Fournier, S. Global mean sea level time series, trajectory and extrapolation [dataset]. Zenodo https://doi.org/10.5281/zenodo.7702315 (2024).
Yu, L. & Weller, R. A. Objectively analyzed air-sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc. 88, 527–539 (2007).
Lee, J. How Deep Was Death Valley’s Temporary Lake? (NASA Earth Observatory, 2024); https://earthobservatory.nasa.gov/images/152645/how-deep-was-death-valleys-temporary-lake
Wang, J., Suzuki, S. & Archer, M. SWOT’s Sea Surface Height Anomaly (NASA Jet Propulsion Laboratory, 2024); https://svs.gsfc.nasa.gov/31308/
Acknowledgements
T.M.P., J.T.F. and F.H. were supported by grants from the NASA Physical Oceanography programme (80NSSC21K0713 and 80NSSC22K0918). The research by L.-L.F. was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA (80NM0018D0004).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Water thanks Weili Duan, Lian Feng and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Vinogradova, N.T., Pavelsky, T.M., Farrar, J.T. et al. A new look at Earth’s water and energy with SWOT. Nat Water 3, 27–37 (2025). https://doi.org/10.1038/s44221-024-00372-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s44221-024-00372-w