Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Underlying rules of evolutionary urban systems in Africa

Abstract

Africa is set to drive future global urbanization, yet the evolution of its urban systems remains underexplored. Here we show this evolution during 1950–2020 using three urban system rules based on a unified urban definition across the African continent. Zipf’s law quantified increasing population concentration in large cities, leading to a shift from dispersed to centralized city-size distributions. As Gibrat’s law predicted, urban population growth was independent of its initial size since the 1990s. Relative growth among different-sized cities changed urban hierarchy, thus the integration of Zipf’s and Gibrat’s laws uncovered imbalances in urban system structures. The third rule we focus on is the scaling law, where unexpected super-linear scaling relationships between built-up areas and population size indicated lower land-use efficiency in large cities, particularly in Eastern and Western Africa. However, the overall decline in built-up scaling exponents over time suggested improving economies of scale as urban systems matured. This study evidenced simple rules behind complex urban systems that help us understand broader urban complexities and urbanization dynamics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Evolution of African urban systems and urbanization trends.
Fig. 2: Zipf’s law of the African urban system.
Fig. 3: Gibrat’s law of the African urban system.
Fig. 4: Scaling law between built-up areas and population size in Africa.

Similar content being viewed by others

Data availability

The population and built-up areas of African urban agglomerations are publicly available from Africapolis (https://africapolis.org/en). The total urban population and urbanization level of Africa are from the World Population Prospects 2022 (https://population.un.org/wpp/). Macro socio-economic statistics at the country level, such as GDP per capita, are from the World Bank (https://data.worldbank.org/). The geospatial data of administrative boundaries for mapping are from the Global Administrative Areas (GADM; https://gadm.org/).

Code availability

Statistical analyses are performed using R programming (version 1.4.1717) and maps are drawn using ArcGIS (version 10.6). The R code is available on GitHub at https://github.com/xugang2016/african-urban-system.

References

  1. Elmqvist, T. et al. Urbanization in and for the Anthropocene. npj Urban Sustain. 1, 6 (2021).

    Article  Google Scholar 

  2. Yang, R. et al. Urban rooftops for food and energy in China. Nat. Cities 1, 741–750 (2024).

    Article  Google Scholar 

  3. Bai, X. Post-2030 global goals need explicit targets for cities and businesses. Science 385, eadq4993 (2024).

    Article  Google Scholar 

  4. World Cities Report 2022: Envisaging the Future of Cities (United Nations Research Institute for Social Development, 2022).

  5. Cobbinah, P. B., Erdiaw-Kwasie, M. O. & Amoateng, P. Africa’s urbanisation: implications for sustainable development. Cities 47, 62–72 (2015).

    Article  Google Scholar 

  6. OECD/SWAC Africa’s Urbanisation Dynamics 2020: Africapolis, Mapping a New Urban Geography (OECD Publishing, 2020).

  7. Berry, B. J. Cities as systems within systems of cities. Pap. Reg. Sci. 13, 146–163 (1964).

    Article  Google Scholar 

  8. Arcaute, E. & Ramasco, J. J. Recent advances in urban system science: models and data. PLoS ONE 17, e0272863 (2022).

    Article  Google Scholar 

  9. Bettencourt, L. M. Introduction to Urban Science: Evidence and Theory of Cities as Complex Systems (MIT Press, 2021).

  10. Lobo, J. et al. Urban science: integrated theory from the first cities to sustainable metropolises. Preprint at SSRN https://doi.org/10.2139/ssrn.3526940 (2020).

  11. Acuto, M., Parnell, S. & Seto, K. C. Building a global urban science. Nat. Sustain. 1, 2–4 (2018).

    Article  Google Scholar 

  12. Batty, M. The New Science of Cities (MIT Press, 2013).

  13. Li, R. et al. Simple spatial scaling rules behind complex cities. Nat. Commun. 8, 1841 (2017).

    Article  Google Scholar 

  14. Batty, M. The size, scale, and shape of cities. Science 319, 769–771 (2008).

    Article  Google Scholar 

  15. Gabaix, X. Zipf’s law for cities: an explanation. Q. J. Econ. 114, 739–767 (1999).

    Article  Google Scholar 

  16. Batty, M. Rank clocks. Nature 444, 592–596 (2006).

    Article  Google Scholar 

  17. Eeckhout, J. Gibrat’s law for (all) cities. Am. Econ. Rev. 94, 1429–1451 (2004).

    Article  Google Scholar 

  18. Verbavatz, V. & Barthelemy, M. The growth equation of cities. Nature 587, 397–401 (2020).

    Article  Google Scholar 

  19. Bettencourt, L. M., Lobo, J., Helbing, D., Kuhnert, C. & West, G. B. Growth, innovation, scaling, and the pace of life in cities. Proc. Natl Acad. Sci. USA 104, 7301–7306 (2007).

    Article  Google Scholar 

  20. Bettencourt, L. M. A. The origins of scaling in cities. Science 340, 1438–1441 (2013).

    Article  Google Scholar 

  21. Lu, M., Zhou, C., Wang, C., Jackson, R. B. & Kempes, C. P. Worldwide scaling of waste generation in urban systems. Nat. Cities 1, 126–135 (2024).

    Article  Google Scholar 

  22. West, G. B. Scale: The Universal Laws of Growth, Innovation, Sustainability, and the Pace of Lifein Organisms, Cities, Economies, and Companies (Penguin, 2017).

  23. Keuschnigg, M., Mutgan, S. & Hedström, P. Urban scaling and the regional divide. Sci. Adv. 5, eaav0042 (2019).

    Article  Google Scholar 

  24. Gomez-Lievano, A., Patterson-Lomba, O. & Hausmann, R. Explaining the prevalence, scaling and variance of urban phenomena. Nat. Hum. Behav. 1, 0012 (2016).

    Article  Google Scholar 

  25. Arvidsson, M., Lovsjö, N. & Keuschnigg, M. Urban scaling laws arise from within-city inequalities. Nat. Hum. Behav. 7, 365–374 (2023).

    Article  Google Scholar 

  26. Sahasranaman, A. & Bettencourt, L. M. Urban geography and scaling of contemporary Indian cities. J. R. Soc. Interface 16, 20180758 (2019).

    Article  Google Scholar 

  27. Soo, K. T. Zipf, Gibrat and geography: evidence from China, India and Brazil. Pap. Reg. Sci. 93, 159–182 (2014).

    Article  Google Scholar 

  28. Chauvin, J. P., Glaeser, E., Ma, Y. & Tobio, K. What is different about urbanization in rich and poor countries? Cities in Brazil, China, India and the United States. J. Urban Econ. 98, 17–49 (2017).

    Article  Google Scholar 

  29. Bettencourt, L. & Marchio, N. Street access, informality and development: a block level analysis across all of sub-Saharan Africa. Preprint at https://arxiv.org/abs/2307.16328 (2023).

  30. Prieto-Curiel, R., Patino, J. E. & Anderson, B. Scaling of the morphology of African cities. Proc. Natl Acad. Sci. USA 120, e2214254120 (2023).

    Article  Google Scholar 

  31. Prieto Curiel, R., Cabrera-Arnau, C. & Bishop, S. R. Scaling beyond cities. Front. Phys. 10, 858307 (2022).

    Article  Google Scholar 

  32. Xu, G. et al. Settlement scaling law reveals population-land tensions in 7000+ African urban agglomerations. Habitat Int. 142, 102954 (2023).

    Article  Google Scholar 

  33. Xu, G. et al. Urban expansion and form changes across African cities with a global outlook: spatiotemporal analysis of urban land densities. J. Clean. Prod. 224, 802–810 (2019).

    Article  Google Scholar 

  34. Dong, L. et al. Defining a city—delineating urban areas using cell-phone data. Nat. Cities 1, 117–125 (2024).

    Article  Google Scholar 

  35. World Population Prospects 2022 (United Nations, Department of Economic and Social Affairs, Population Division, 2022).

  36. Giesen, K., Zimmermann, A. & Suedekum, J. The size distribution across all cities—double Pareto lognormal strikes. J. Urban Econ. 68, 129–137 (2010).

    Article  Google Scholar 

  37. Clauset, A., Shalizi, C. R. & Newman, M. E. Power-law distributions in empirical data. SIAM Rev. 51, 661–703 (2009).

    Article  Google Scholar 

  38. Zhao, S. et al. Spatial and temporal dimensions of urban expansion in China. Environ. Sci. Technol. 49, 9600–9609 (2015).

    Article  Google Scholar 

  39. Ning, Y. et al. Urban growth rates, trajectories, and multi-dimensional disparities in China. Cities 126, 103717 (2022).

    Article  Google Scholar 

  40. Salem, M., Tsurusaki, N., Xu, X. & Xu, G. Revealing the transformation of spatial structure of greater Cairo: insights from satellite imagery and geospatial metrics. J. Urban Manage. 13, 565–579 (2024).

    Article  Google Scholar 

  41. Cobbinah, P. B. & Gaisie, E. Reimagining Urban Planning in Africa (Cambridge Univ. Press, 2023).

  42. Sumari, N. S. et al. A geospatial approach to sustainable urban planning: lessons for Morogoro Municipal Council, Tanzania. Sustainability 11, 6508 (2019).

    Article  Google Scholar 

  43. Arcaute, E. et al. Constructing cities, deconstructing scaling laws. J. R. Soc. Interface 12, 20140745 (2015).

    Article  Google Scholar 

  44. Cottineau, C., Hatna, E., Arcaute, E. & Batty, M. Diverse cities or the systematic paradox of urban scaling laws. Comput. Environ. Urban Syst. 63, 80–94 (2017).

    Article  Google Scholar 

  45. Jia, M., Liu, Y., Lieske, S. N. & Chen, T. Public policy change and its impact on urban expansion: an evaluation of 265 cities in China. Land Use Policy 97, 104754 (2020).

    Article  Google Scholar 

  46. Gomez-Lievano, A., Youn, H. & Bettencourt, L. M. The statistics of urban scaling and their connection to Zipf’s law. PLoS ONE 7, e40393 (2012).

    Article  Google Scholar 

  47. Heinrigs, P. Africapolis: understanding the dynamics of urbanization in Africa. Field Actions Sci. Rep. Special Issue 22, 18–23 (2020).

    Google Scholar 

  48. Ades, A. F. & Glaeser, E. L. Trade and circuses: explaining urban giants. Q. J. Econ. 110, 195–227 (1995).

    Article  Google Scholar 

  49. Gabaix, X. & Ibragimov, R. Rank − 1/2: a simple way to improve the OLS estimation of tail exponents. J. Bus. Econ. Stat. 29, 24–39 (2011).

    Article  Google Scholar 

  50. González-Val, R., Ximénez-de-Embún, D. P. & Sanz-Gracia, F. A long-term, regional-level analysis of Zipf’s and Gibrat’s laws in the United States. Cities 149, 104946 (2024).

    Article  Google Scholar 

  51. Succar, R. & Porfiri, M. Urban scaling of firearm violence, ownership and accessibility in the United States. Nat. Cities 1, 216–224 (2024).

    Article  Google Scholar 

  52. Leitao, J. C., Miotto, J. M., Gerlach, M. & Altmann, E. G. Is this scaling nonlinear? R. Soc. Open Sci. 3, 150649 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (42101460 to G.X., 42201373 to B.C. and 42371423 to L.J.), the International Science and Technology Cooperation Project of Hubei Province, China (2023EHA001 to G.X.), the Fundamental Research Funds for the Central Universities (2042024kf0004 to G.X.), the Natural Science Foundation of Hubei Province, China (JCZRYB202400503 to G.X.), the Research Grants Council of Hong Kong Early Career Scheme (HKU27600222 to B.C.) and General Research Fund (HKU17601423 to B.C. and HKU17307024 to P.G.), and the Croucher Foundation (CAS22902/CAS22HU01 to P.G.). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. We greatly appreciate the Africapolis project for providing the valuable dataset to understand urbanization in Africa.

Author information

Authors and Affiliations

Authors

Contributions

G.X., L.J. and P.G. designed the research framework. B.C., M.S. and Z.X. improved the research design. G.X. and M.Z. developed the algorithm, performed data analyses and wrote the draft. B.C., P.B.C., X.L., N.S.S. and X.Z. analyzed and interpreted the results. All authors contributed to editing the paper.

Corresponding authors

Correspondence to Limin Jiao or Peng Gong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Cities thanks Rafael Prieto-Curiel, Ivan Turok and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text, Figs. 1–10 and Tables 1–4.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, G., Zhu, M., Chen, B. et al. Underlying rules of evolutionary urban systems in Africa. Nat Cities 2, 327–335 (2025). https://doi.org/10.1038/s44284-025-00208-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44284-025-00208-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing