Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Monolithic-to-focal evolving biointerfaces in tissue regeneration and bioelectronics

Abstract

Material–biology interfaces are elemental in disease diagnosis and treatment. While monolithic biointerfaces are easier to implement, distributed and focal interfaces tend to be more dynamic and less invasive. Here, using naturally occurring precursors, we constructed a granule-releasing hydrogel platform that shows monolithic-to-focal evolving biointerfaces, thus expanding the forms, delivery methods and application domains of traditional monolithic or focal biointerfaces. Individual granules were embedded in a responsive hydrogel matrix and then converted into various macroscopic shapes such as bandages and bioelectronics–gel hybrids to enhance macroscopic manipulation. The granules can be released from the macroscopic shapes and establish focal bio-adhesions ex vivo and in vivo, for which molecular dynamics simulations reveal the adhesion mechanism. With the evolving design, we demonstrate that granule-releasing hydrogels effectively treat ulcerative colitis, heal skin wounds and reduce myocardial infarctions. Furthermore, we demonstrate improved device manipulation and bio-adhesion when granule-releasing hydrogels are incorporated into flexible cardiac electrophysiology mapping devices. This work presents an approach for building dynamic biointerfaces.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The dynamic hydrogel system forms a granular biointerface for diagnosis and therapy.
Fig. 2: The granule-releasing hydrogel shows dynamic mechanical behavior and responsiveness for granular transport.
Fig. 3: Chemical modification of granule composites with bioactive molecules enhances biological affinity.
Fig. 4: AGH system treats DSS-induced ulcerative colitis in vivo.
Fig. 5: AGH accelerates the skin wound healing process in vivo.
Fig. 6: The granule-releasing hydrogel promotes mesh bioelectronics ECG recording and myocardial infarction treatment.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the article and its Supplementary Information. Data are also available from the corresponding authors upon reasonable request. Source data are provided with this paper. All Source Data are also available at https://osf.io/tns4k/?view_only=2bac0651e0f84f62acd95d490c773c31.

Code availability

Custom code used in this study is available at https://github.com/sjiuyun/Code-Availability.

References

  1. Elnathan, R. et al. Biointerface design for vertical nanoprobes. Nat. Rev. Mater. https://doi.org/10.1038/s41578-022-00464-7 (2022).

  2. Zhang, S. F. et al. An inflammation-targeting hydrogel for local drug delivery in inflammatory bowel disease. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aaa5657 (2015).

  3. Nan, K. et al. Mucosa-interfacing electronics. Nat. Rev. Mater. https://doi.org/10.1038/s41578-022-00477-2 (2022).

  4. Jiang, Y. W. et al. Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics. Science 375, 1411–1417 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. Wang, X. et al. A nanofibrous encapsulation device for safe delivery of insulin-producing cells to treat type 1 diabetes. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.abb4601 (2021).

  6. Armstrong, J. P. K. et al. A blueprint for translational regenerative medicine. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aaz2253 (2020).

  7. Yang, Q. S. et al. Photocurable bioresorbable adhesives as functional interfaces between flexible bioelectronic devices and soft biological tissues. Nat. Mater. 20, 1559–1570 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kim, D. H. et al. Epidermal electronics. Science 333, 838–843 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Yang, Y. Y. et al. Wireless multilateral devices for optogenetic studies of individual and social behaviors. Nat. Neurosci. 24, 1035–1045 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Freedman, B. R. et al. Enhanced tendon healing by a tough hydrogel with an adhesive side and high drug-loading capacity. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-021-00810-0 (2022).

  11. Deng, J. et al. Electrical bioadhesive interface for bioelectronics. Nat. Mater. 20, 229–236 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Tringides, C. M. et al. Viscoelastic surface electrode arrays to interface with viscoelastic tissues. Nat. Nanotechnol. 16, 1019–1029 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lin, X. et al. A viscoelastic adhesive epicardial patch for treating myocardial infarction. Nat. Biomed. Eng. 3, 632–643 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Brannon, E. R. et al. Polymeric particle-based therapies for acute inflammatory diseases. Nat. Rev. Mater. 7, 796–813 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lueckgen, A. et al. Enzymatically-degradable alginate hydrogels promote cell spreading and in vivo tissue infiltration. Biomaterials https://doi.org/10.1016/j.biomaterials.2019.119294 (2019).

  16. Griffin, D. R., Weaver, W. M., Scumpia, P. O., Di Carlo, D. & Segura, T. Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks. Nat. Mater. 14, 737–744 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen, J. et al. Pollen-inspired enzymatic microparticles to reduce organophosphate toxicity in managed pollinators. Nat. Food 2, 339–347 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Tang, J. A. et al. Therapeutic microparticles functionalized with biomimetic cardiac stem cell membranes and secretome. Nat. Commun. 8, 13724 (2017).

  19. Gattazzo, F., Urciuolo, A. & Bonaldo, P. Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim. Biophys. Acta 1840, 2506–2519 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Koo, J. et al. Wireless bioresorbable electronic system enables sustained nonpharmacological neuroregenerative therapy. Nat. Med. 24, 1830–1836 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Allen, M. E., Hindley, J. W., Baxani, D. K., Ces, O. & Elan, Y. Hydrogels as functional components in artificial cell systems. Nat. Rev. Chem. 6, 562–578 (2022).

    Article  CAS  PubMed  Google Scholar 

  22. Daly, A. C., Riley, L., Segura, T. & Burdick, J. A. Hydrogel microparticles for biomedical applications. Nat. Rev. Mater. 5, 20–43 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Xu, Y. X., Kim, K. M., Hanna, M. A. & Nag, D. Chitosan-starch composite film: preparation and characterization. Ind. Crop Prod. 21, 185–192 (2005).

    Article  CAS  Google Scholar 

  24. Masina, N. et al. A review of the chemical modification techniques of starch. Carbohyd. Polym. 157, 1226–1236 (2017).

    Article  CAS  Google Scholar 

  25. Li, J. X. et al. A tissue-like neurotransmitter sensor for the brain and gut. Nature 606, 94–101 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Guimaraes, C. F., Gasperini, L., Marques, A. P. & Reis, R. L. The stiffness of living tissues and its implications for tissue engineering. Nat. Rev. Mater. 5, 351–370 (2020).

    Article  Google Scholar 

  27. Fang, Y. et al. Dynamic and programmable cellular-scale granules enable tissue-like materials. Matter 2, 948–964 (2020).

    Article  Google Scholar 

  28. Park, B. et al. Cuticular pad-inspired selective frequency damper for nearly dynamic noise-free bioelectronics. Science 376, 624–629 (2022).

    Article  CAS  PubMed  Google Scholar 

  29. Du, H. L., Liu, M. R., Yang, X. Y. & Zhai, G. X. The design of pH-sensitive chitosan-based formulations for gastrointestinal delivery. Drug Discov. Today 20, 1004–1011 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Dabrowska, M., Starek, M. & Skucinski, J. Lipophilicity study of some non-steroidal anti-inflammatory agents and cephalosporin antibiotics: a review. Talanta 86, 35–51 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Galie, P. A. et al. Fluid shear stress threshold regulates angiogenic sprouting. Proc. Natl Acad. Sci. USA 111, 7968–7973 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kobayashi, T. et al. Ulcerative colitis. Nat. Rev. Dis. Primers 6, 74 (2020).

    Article  PubMed  Google Scholar 

  33. Jeong, D. Y. et al. Induction and maintenance treatment of inflammatory bowel disease: a comprehensive review. Autoimmun. Rev. 18, 439–454 (2019).

    Article  PubMed  Google Scholar 

  34. Chassaing, B., Aitken, J. D., Malleshappa, M. & Vijay-Kumar, M. Dextran sulfate sodium (DSS)-induced colitis in mice. Curr. Protoc. Immunol. 104, 15.25.11–15.25.14 (2014).

    Google Scholar 

  35. Diao, Y. J. et al. Effect of interactions between starch and chitosan on waxy maize starch physicochemical and digestion properties. CyTA J. Food 15, 327–335 (2017).

    Article  CAS  Google Scholar 

  36. Cao, Y. P. & Mezzenga, R. Design principles of food gels. Nat. Food 1, 106–118 (2020).

    Article  PubMed  Google Scholar 

  37. Ni, J., Wu, G. D., Albenberg, L. & Tomov, V. T. Gut microbiota and IBD: causation or correlation? Nat. Rev. Gastroenterol. Hepatol. 14, 573–584 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Round, J. L. & Mazmanian, S. K. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 9, 313–323 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fabia, R. et al. Impairment of bacterial-flora in human ulcerative-colitis and experimental colitis in the rat. Digestion 54, 248–255 (1993).

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, Z. et al. Chlorogenic acid ameliorates experimental colitis by promoting growth of akkermansia in mice. Nutrients https://doi.org/10.3390/nu9070677 (2017).

  41. Osman, N., Adawi, D., Ahrne, S., Jeppsson, B. & Molin, G. Modulation of the effect of dextran sulfate sodium-induced acute colitis by the administration of different probiotic strains of Lactobacillus and Bifidobacterium. Digest. Dis. Sci. 49, 320–327 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Geier, M. S., Butler, R. N., Giffard, P. M. & Howarth, G. S. Lactobacillus fermentum BR11, a potential new probiotic, alleviates symptoms of colitis induced by dextran sulfate sodium (DSS) in rats. Int. J. Food Microbiol. 114, 267–274 (2007).

    Article  PubMed  Google Scholar 

  43. Sostres, C. & Lanas, A. Gastrointestinal effects of aspirin. Nat. Rev. Gastroenterol. Hepatol. 8, 385–394 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Zhang, W. et al. Catechol-functionalized hydrogels: biomimetic design, adhesion mechanism, and biomedical applications. Chem. Soc. Rev. 49, 433–464 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Griffin, D. R. et al. Activating an adaptive immune response from a hydrogel scaffold imparts regenerative wound healing. Nat. Mater. 20, 560–569 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Gurtner, G. C., Werner, S., Barrandon, Y. & Longaker, M. T. Wound repair and regeneration. Nature 453, 314–321 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Park, J. et al. Electromechanical cardioplasty using a wrapped elasto-conductive epicardial mesh. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aad8568 (2016).

  48. Thygesen, K. et al. Third universal definition of myocardial infarction. Nat. Rev. Cardiol. 9, 620–633 (2012).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Watters for scientific editing of the paper. B.T. acknowledges support from the US Air Force Office of Scientific Research (FA9550-20-1-0387), the National Science Foundation (NSF MPS-2121044) and the US Army Research Office (W911NF-21-1-0090). B.T. and J.Y. acknowledge support from the GI research foundation. P.K. acknowledges support from the National Science Foundation (DMR 2212123). Use of the Advanced Photon Source and the Center for Nanoscale Materials, both US Department of Energy Office of Science User Facilities, was supported by the US Department of Energy, Office of Science, under contract no. DE-AC02-06CH11357. H.-M.T. acknowledges the support from the Integrated Small Animal Imaging Research Resource (iSAIRR) at the University of Chicago. Parts of this work were carried out at the Soft Matter Characterization Facility of the University of Chicago. Parts of the diagrams in Fig. 1f and Fig. 4b were created with BioRender.com. We thank A. Tokmakoff and X.-x. Zhang for their support and helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

B.T., J.Y., P.K. and E.B.C. supervised the research. J.S., J.Y. and B.T. conceived the idea. J.S., Y. Lin, J.Y. and B.T. developed the methods. J.S., Y. Lin, P.L., C.S., K.P., S.K., B.A., L.M., Y. Luo, S.C., H.-M.T., C.M.C., J.Z., Z.C., J.A.A.-H., J.C. and J.Y. performed the experiments. P.M. and P.K. performed the simulation. J.M., Y. Luo, S.C., H.-M.T. and P.G. analyzed and processed the data. J.S., Y. Lin, J.Y. and B.T. wrote the paper with comments from all authors.

Corresponding authors

Correspondence to Petr Král, Jiping Yue or Bozhi Tian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Engineering thanks Eric Appel, Youn Soo Kim and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Materials and Methods, Tables 1–3 and Figs. 1–67.

Reporting Summary

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Lin, Y., Li, P. et al. Monolithic-to-focal evolving biointerfaces in tissue regeneration and bioelectronics. Nat Chem Eng 1, 73–86 (2024). https://doi.org/10.1038/s44286-023-00008-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44286-023-00008-y

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research