Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Water management and heat integration in direct air capture systems

Abstract

Water plays a pivotal role in direct air capture technologies, impacting materials, regeneration processes and product streams. CO2 removal methods, including absorption, adsorption and electrochemical techniques, encounter challenges associated with water, thus reducing their efficacy. Water fluxes into and out of aqueous solvents affect the concentration and overall capture performance. Solid adsorbents co-adsorb water in greater quantities than CO2 and will require effective strategies to address the substantial energy penalty associated with water desorption each cycle. Water-management strategies are imperative for economic viability and minimizing the environmental impact, but the high energy intensity necessitates heat recovery techniques. Feed dehydration can be combined with strategic heat integration of process streams and standard recovery techniques for front-end water management. For back-end approaches, mechanical vapor compression is a viable solution for coupling heat integration with water management, and we highlight potential heat recovery benefits of three implementation methods. Further research into variable climate conditions and water quality impacts is essential for the success of direct air capture technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Types of DAC process, with water and heat inputs highlighted.
Fig. 2: Temperature swing adsorption with no water management.
Fig. 3: Front-end engineering strategies for water management with heat integration.
Fig. 4: Back-end engineering strategies for water management with heat integration.

Similar content being viewed by others

References

  1. Young, J. et al. The cost of direct air capture and storage can be reduced via strategic deployment but is unlikely to fall below stated cost targets. One Earth 6, 899–917 (2023).

    Article  ADS  Google Scholar 

  2. Küng, L. K. et al. A roadmap for achieving scalable, safe, and low-cost direct air carbon capture and storage. Energy Environ. Sci. 16, 4280–4304 (2023).

    Article  Google Scholar 

  3. Erans, M. et al. Direct air capture: process technology, techno-economic and socio-political challenges. Energy Environ. Sci. 15, 1360–1405 (2022).

    Article  CAS  Google Scholar 

  4. Sabatino, F. et al. A comparative energy and costs assessment and optimization for direct air capture technologies. Joule 5, 2047–2076 (2021).

    Article  CAS  Google Scholar 

  5. Kasturi, A. et al. An effective air-liquid contactor for CO2 direct air capture using aqueous solvents. Sep. Purif. Technol. 324, 124398 (2023).

    Article  CAS  Google Scholar 

  6. Custelcean, R. Direct air capture of CO2 using solvents. Annu. Rev. Chem. Biomol. Eng. 13, 217–234 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. Keith, D. W., Holmes, G., Angelo, D. S. & Heidel, K. A process for capturing CO2 from the atmosphere. Joule 2, 1573–1594 (2018).

    Article  CAS  Google Scholar 

  8. Sanz-Perez, E. S., Murdock, C. R., Didas, S. A. & Jones, C. W. Direct capture of CO2 from ambient air. Chem. Rev. 116, 11840–11876 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. An, K. J., Farooqui, A. & McCoy, S. T. The impact of climate on solvent-based direct air capture systems. Appl. Energy 325, 119895 (2022).

    Article  CAS  Google Scholar 

  10. Rosa, L., Sanchez, D. L., Realmonte, G., Baldocchi, D. & D'Odorico, P. The water footprint of carbon capture and storage technologies. Renew. Sustain. Energy Rev 138, 110511 (2021).

  11. Negative Emissions Technologies and Reliable Sequestration: A Research Agenda (National Academies Press, 2019).

  12. Hospital-Benito, D., Moya, C., Gazzani, M. & Palomar, J. Direct air capture based on ionic liquids: from molecular design to process assessment. Chem. Eng. J. 468, 143630 (2023).

    Article  CAS  Google Scholar 

  13. Doblinger, S., Donati, T. J. & Silvester, D. S. Effect of humidity and impurities on the electrochemical window of ionic liquids and its implications for electroanalysis. J. Phys. Chem. C 124, 20309–20319 (2020).

    Article  CAS  Google Scholar 

  14. Min, Z. J. et al. How does the moisture affect CO2 absorption by a glycinate ionic liquid? ACS Sustain. Chem. Eng. 9, 853–862 (2021).

  15. Huang, Y. J. et al. Reply to the correspondence on ‘preorganization and cooperation for highly efficient and reversible capture of low-concentration CO2 by ionic liquids. Angew. Chem. Int. Ed. 58, 386–389 (2019).

  16. Renfrew, S. E., Starr, D. E. & Strasser, P. Electrochemical approaches toward CO2 capture and concentration. ACS Catal. 10, 13058–13074 (2020).

    Article  CAS  Google Scholar 

  17. Sabatino, F., Gazzani, M., Gallucci, F. & Annaland, M. V. Modeling, optimization and techno-economic analysis of bipolar membrane electrodialysis for direct air capture processes. Ind. Eng. Chem. Res. 61, 12668–12679 (2022).

    Article  CAS  Google Scholar 

  18. Diederichsen, K. M. et al. Electrochemical methods for carbon dioxide separations. Nat. Rev. Methods Primers 2, 68 (2022).

    Article  CAS  Google Scholar 

  19. Wang, M., Herzog, H. J. & Hatton, T. A. CO2 capture using electrochemically mediated amine regeneration. Ind. Eng. Chem. Res. 59, 7087–7096 (2020).

    Article  CAS  Google Scholar 

  20. Eisaman, M. D. et al. CO2 separation using bipolar membrane electrodialysis. Energy Environ. Sci. 4, 1319–1328 (2011).

    Article  CAS  Google Scholar 

  21. Liu, Y. Y., Ye, H. Z., Diederichsen, K. M., Van Voorhis, T. & Hatton, T. A. Electrochemically mediated carbon dioxide separation with quinone chemistry in salt-concentrated aqueous media. Nat. Commun. 11, 2278 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Seo, H., Rahimi, M. & Hatton, T. A. Electrochemical carbon dioxide capture and release with a redox-active amine. J. Am. Chem. Soc. 144, 2164–2170 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Seo, H. & Hatton, T. A. Electrochemical direct air capture of CO2 using neutral red as reversible redox-active material. Nat. Commun. 14, 313 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kolle, J. M., Fayaz, M. & Sayari, A. Understanding the effect of water on CO2 adsorption. Chem. Rev. 121, 7280–7345 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Ben Said, R., Kolle, J. M., Essalah, K., Tangour, B. & Sayari, A. A unified approach to CO2-amine reaction mechanisms. ACS Omega 5, 26125–26133 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Holmes, H. E. et al. Optimum relative humidity enhances CO2 uptake in diamine-appended M2(dobpdc). Chem. Eng. J. 477, 147119 (2023).

    Article  CAS  Google Scholar 

  27. Burtch, N. C., Jasuja, H. & Walton, K. S. Water stability and adsorption in metal-organic frameworks. Chem. Rev. 114, 10575–10612 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Kusgens, P. et al. Characterization of metal-organic frameworks by water adsorption. Microporous Mesoporous Mater. 120, 325–330 (2009).

    Article  Google Scholar 

  29. Holmes, H. E., Lively, R. P. & Realff, M. J. Defining targets for adsorbent materials performance to enable viable BECCS processes. JACS Au 1, 795–806 (2021).

  30. Song, M. Y. et al. Cold-temperature capture of carbon dioxide with water coproduction from air using commercial zeolites. Ind. Eng. Chem. Res. https://doi.org/10.1021/acs.iecr.2c02041 (2022).

    Article  Google Scholar 

  31. Shi, X. Y. et al. Moisture-driven CO2 sorbents. Joule 4, 1823–1837 (2020).

    Article  CAS  Google Scholar 

  32. Wang, T., Lackner, K. S. & Wright, A. Moisture swing sorbent for carbon dioxide capture from ambient air. Environ. Sci. Technol. 45, 6670–6675 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. McQueen, N., Kelemen, P., Dipple, G., Renforth, P. & Wilcox, J. Ambient weathering of magnesium oxide for CO2 removal from air. Nat. Commun. 11, 3299 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gadikota, G. Carbon mineralization pathways for carbon capture, storage and utilization. Commun. Chem 4, 23 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sinha, A., Darunte, L. A., Jones, C. W., Realff, M. J. & Kawajiri, Y. Systems design and economic analysis of direct air capture of CO2 through temperature vacuum swing adsorption using MIL-101(Cr)-PEI-800 and mmen-Mg2(dobpdc) MOF adsorbents. Ind. Eng. Chem. Res. 56, 750–764 (2017).

    Article  CAS  Google Scholar 

  36. Ritter, J. A., Ebner, A. D. & Holland, C. E. Temperature-vacuum swing adsorption process for capture of CO2. US patent 20200001225 (2021).

  37. Wu, X. W., Krishnamoorti, R. & Bollini, P. Technological options for direct air capture: a comparative process engineering review. Annu. Rev. Chem. Biomol. Eng. 13, 279–300 (2022).

    Article  CAS  PubMed  Google Scholar 

  38. Joel, A. S., Wang, M. H., Ramshaw, C. & Oko, E. Modelling, simulation and analysis of intensified regenerator for solvent based carbon capture using rotating packed bed technology. Appl. Energy 203, 11–25 (2017).

    Article  ADS  CAS  Google Scholar 

  39. Drechsler, C. & Agar, D. W. Simulation and optimization of a novel moving belt adsorber concept for the direct air capture of carbon dioxide. Comput. Chem. Eng. 126, 520–534 (2019).

    Article  CAS  Google Scholar 

  40. Leonzio, G. & Shah, N. L. Innovative process integrating air source heat pumps and direct air capture processes. Ind. Eng. Chem. Res. 61, 13221–13230 (2022).

    Article  CAS  Google Scholar 

  41. Peacock, J., Cooper, R., Waller, N. & Richardson, G. Decarbonising aviation at scale through synthesis of sustainable e-fuel: a techno-economic assessment. Int. J. Hydrogen Energy 50, 869–890 (2024).

    Article  CAS  Google Scholar 

  42. Sendi, M., Bui, M., Dowell, N. M. & Fennell, P. Geospatial analysis of regional climate impacts to accelerate cost-efficient direct air capture deployment. One Earth 5, 1153–1164 (2022).

    Article  ADS  Google Scholar 

  43. Wiegner, J. F., Grimm, A., Weimann, L. & Gazzani, M. Optimal design and operation of solid sorbent direct air capture processes at varying ambient conditions. Ind. Eng. Chem. Res. 61, 12649–12667 (2022).

    Article  CAS  Google Scholar 

  44. Massen-Hane, M., Diederichsen, K. M. & Hatton, T. A. Engineering redox-active electrochemically mediated carbon dioxide capture systems. Nat. Chem. Eng. 1, 35–44 (2024).

    Article  Google Scholar 

Download references

Acknowledgements

H.E.H. thanks the National Science Foundation Graduate Research Fellowship Program for financial support. This research was funded by the Advanced Research Projects Agency-Energy of the US Department of Energy under award no. DEAR0001414. We thank C. W. Jones (Georgia Institute of Technology) for useful discussions on this topic.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to discussions, analysis, and review and editing of the manuscript. R.P.L. contributed to conceptualization and visualization, M.J.R. to conceptualization and formal analysis, and H.E.H. to visualization, formal analysis and writing of the original draft.

Corresponding authors

Correspondence to Matthew J. Realff or Ryan P. Lively.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Engineering thanks Costas Tsouris and Tao Wang for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holmes, H.E., Realff, M.J. & Lively, R.P. Water management and heat integration in direct air capture systems. Nat Chem Eng 1, 208–215 (2024). https://doi.org/10.1038/s44286-024-00032-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44286-024-00032-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing