Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Engineering considerations for next-generation oligonucleotide therapeutics

Abstract

Oligonucleotide therapeutics are revolutionizing disease treatment by regulating molecules at the genetic level, offering the possibility of treating conditions that were once considered ‘undruggable’. However, delivering oligonucleotides to tissues beyond the liver remains a key challenge, limiting their clinical applications thus far to niche indications. To achieve broader applicability, extensive biomolecular engineering is necessary to enhance the stability, tissue targetability, pharmacokinetics and pharmacodynamics of these structures. The intricate design of these molecules also demands sophisticated process-engineering techniques. Here we provide a collaborative Perspective from academia and industry on the pivotal role of chemical engineering in expanding the use of therapeutic oligonucleotides to treat a wider range of diseases. We discuss how the interplay between biomolecular and process engineering impacts the developability of next-generation oligonucleotide therapeutics as well as their translation from bench to bedside.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Broad categories of biomolecular engineering strategies and considerations for the process design and API/drug product attributes of the resultant structures.
Fig. 2: Summary of biomolecular engineering strategies for enhancing oligonucleotide properties.
Fig. 3: Process flow diagram for the synthesis of oligonucleotide API and DP formulation.

Similar content being viewed by others

References

  1. Roberts, T. C., Langer, R. & Wood, M. J. A. Advances in oligonucleotide drug delivery. Nat. Rev. Drug Discov. 19, 673–694 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jadhav, V., Vaishnaw, A., Fitzgerald, K. & Maier, M. A. RNA interference in the era of nucleic acid therapeutics. Nat. Biotechnol. 42, 394–405 (2024).

    Article  CAS  PubMed  Google Scholar 

  3. Winkle, M., El-Daly, S. M., Fabbri, M. & Calin, G. A. Noncoding RNA therapeutics—challenges and potential solutions. Nat. Rev. Drug Discov. 20, 629–651 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Spradlin, J. N., Zhang, E. & Nomura, D. K. Reimagining druggability using chemoproteomic platforms. Acc. Chem. Res. 54, 1801–1813 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Janssen, K. et al. Exploiting the intrinsic misfolding propensity of the KRAS oncoprotein. Proc. Natl Acad. Sci. USA 120, e2214921120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Egli, M. & Manoharan, M. Chemistry, structure and function of approved oligonucleotide therapeutics. Nucleic Acids Res. 51, 2529–2573 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Senior, M. Fresh from the biotech pipeline: record-breaking FDA approvals. Nat. Biotechnol. 42, 355–361 (2024).

    Article  CAS  PubMed  Google Scholar 

  8. Obexer, R., Nassir, M., Moody, E. R., Baran, P. S. & Lovelock, S. L. Modern approaches to therapeutic oligonucleotide manufacturing. Science 384, eadl4015 (2024).

    Article  CAS  PubMed  Google Scholar 

  9. Tang, Q. & Khvorova, A. RNAi-based drug design: considerations and future directions. Nat. Rev. Drug Discov. 23, 341–364 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Qin, S. et al. mRNA-based therapeutics: powerful and versatile tools to combat diseases. Signal Transduct. Target. Ther. 7, 166 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rohner, E., Yang, R., Foo, K. S., Goedel, A. & Chien, K. R. Unlocking the promise of mRNA therapeutics. Nat. Biotechnol. 40, 1586–1600 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Geary, R. S., Norris, D., Yu, R. & Bennett, C. F. Pharmacokinetics, biodistribution and cell uptake of antisense oligonucleotides. Adv. Drug Deliv. Rev. 87, 46–51 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Bost, J. P. et al. Delivery of oligonucleotide therapeutics: chemical modifications, lipid nanoparticles and extracellular vesicles. ACS Nano 15, 13993–14021 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Baker, Y. R. et al. An LNA-amide modification that enhances the cell uptake and activity of phosphorothioate exon-skipping oligonucleotides. Nat. Commun. 13, 4036 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Judge, A. D., Bola, G., Lee, A. C. H. & MacLachlan, I. Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo. Mol. Ther. 13, 494–505 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Pollak, A. J. et al. Insights into innate immune activation via PS-ASO–protein–TLR9 interactions. Nucleic Acids Res. 50, 8107–8126 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bijsterbosch, M. K. et al. In vivo fate of phosphorothioate antisense oligodeoxynucleotides: predominant uptake by scavenger receptors on endothelial liver cells. Nucleic Acids Res. 25, 3290–3296 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hammond, S. M. et al. Antibody-oligonucleotide conjugate achieves CNS delivery in animal models for spinal muscular atrophy. JCI Insight 7, e154142 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Barker, S. J. et al. Targeting the transferrin receptor to transport antisense oligonucleotides across the mammalian blood-brain barrier. Sci. Transl. Med. 16, eadi2245 (2024).

    Article  CAS  PubMed  Google Scholar 

  20. Vinjamuri, B. P., Pan, J. & Peng, P. A review on commercial oligonucleotide drug products. J. Pharm. Sci. 113, 1749–1768 (2024).

    Article  CAS  PubMed  Google Scholar 

  21. Kim, J., Eygeris, Y., Ryals, R. C., Jozić, A. & Sahay, G. Strategies for non-viral vectors targeting organs beyond the liver. Nat. Nanotechnol. 19, 428–447 (2024).

    Article  CAS  PubMed  Google Scholar 

  22. Nagata, T. et al. Cholesterol-functionalized DNA/RNA heteroduplexes cross the blood-brain barrier and knock down genes in the rodent CNS. Nat. Biotechnol. 39, 1529–1536 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Li, X. et al. Enhanced in vivo blood–brain barrier penetration by circular tau-transferrin receptor bifunctional aptamer for tauopathy therapy. J. Am. Chem. Soc. 142, 3862–3872 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Malecova, B. et al. Targeted tissue delivery of RNA therapeutics using antibody–oligonucleotide conjugates (AOCs). Nucleic Acids Res. 51, 5901–5910 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shu, D. et al. Systemic delivery of anti-miRNA for suppression of triple negative breast cancer utilizing RNA nanotechnology. ACS Nano 9, 9731–9740 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Beck, C. et al. Trimannose-coupled antimiR-21 for macrophage-targeted inhalation treatment of acute inflammatory lung damage. Nat. Commun. 14, 4564 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brown, K. M. et al. Expanding RNAi therapeutics to extrahepatic tissues with lipophilic conjugates. Nat. Biotechnol. 40, 1500–1508 (2022).

    Article  CAS  PubMed  Google Scholar 

  28. Nair, J. K. et al. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J. Am. Chem. Soc. 136, 16958–16961 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Ebrahimi, S. B., Samanta, D. & Mirkin, C. A. DNA-based nanostructures for live-cell analysis. J. Am. Chem. Soc. 142, 11343–11356 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Chen, Q. et al. Lipophilic siRNAs mediate efficient gene silencing in oligodendrocytes with direct CNS delivery. J. Control. Release 144, 227–232 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Poecheim, J. et al. Development of stable liquid formulations for oligonucleotides. Eur. J. Pharm. Biopharm. 129, 80–87 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101–124 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Rosi, N. L. et al. Oligonucleotide-modified gold nanoparticles for infracellular gene regulation. Science 312, 1027–1030 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Jensen, S. A. et al. Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma. Sci. Transl. Med. 5, 209ra152 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yan, Y. et al. Functional polyesters enable selective siRNA delivery to lung cancer over matched normal cells. Proc. Natl Acad. Sci. USA 113, E5702–E5710 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Huang, K. et al. Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids and tumors in vivo. ACS Nano 6, 4483–4493 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hu, B. et al. Thermostable ionizable lipid-like nanoparticle (iLAND) for RNAi treatment of hyperlipidemia. Sci. Adv. 8, eabm1418 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mullard, A. FDA approves fifth RNAi drug—Alnylam’s next-gen hATTR treatment. Nat. Rev. Drug Discov. 21, 548–549 (2022).

    PubMed  Google Scholar 

  40. Hoose, A., Vellacott, R., Storch, M., Freemont, P. S. & Ryadnov, M. G. DNA synthesis technologies to close the gene writing gap. Nat. Rev. Chem. 7, 144–161 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Moody, E. R., Obexer, R., Nickl, F., Spiess, R. & Lovelock, S. L. An enzyme cascade enables production of therapeutic oligonucleotides in a single operation. Science 380, 1150–1154 (2023).

    Article  CAS  PubMed  Google Scholar 

  42. Molina, A. G. & Sanghvi, Y. S. Liquid-phase oligonucleotide synthesis: past, present and future predictions. Curr. Protoc. Nucleic Acid Chem. 77, e82 (2019).

    Article  PubMed  Google Scholar 

  43. Palluk, S. et al. De novo DNA synthesis using polymerase-nucleotide conjugates. Nat. Biotechnol. 36, 645–650 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Wiegand, D. J. et al. Template-independent enzymatic synthesis of RNA oligonucleotides. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02244-w (2024).

  45. Crameri, A. & Tew, D. G. Novel processes for the production of oligonucleotides. PCT patent WO2019121500A1 (2017).

  46. Lobue, P. A., Jora, M., Addepalli, B. & Limbach, P. A. Oligonucleotide analysis by hydrophilic interaction liquid chromatography-mass spectrometry in the absence of ion-pair reagents. J. Chromatogr. A 1595, 39–48 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Muslehiddinoglu, J. et al. Technical considerations for use of oligonucleotide solution API. Nucleic Acid Ther. 30, 189–197 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Iwamoto, N. et al. Control of phosphorothioate stereochemistry substantially increases the efficacy of antisense oligonucleotides. Nat. Biotechnol. 35, 845–851 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Danaei, M. et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 10, 57 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Herrmann, I. K., Wood, M. J. A. & Fuhrmann, G. Extracellular vesicles as a next-generation drug delivery platform. Nat. Nanotechnol. 16, 748–759 (2021).

    Article  CAS  PubMed  Google Scholar 

  51. Huang, Y. et al. A P(V) platform for oligonucleotide synthesis. Science 373, 1265–1270 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li, H. et al. Molecular spherical nucleic acids. Proc. Natl Acad. Sci. USA 115, 4340–4344 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sych, T. et al. High-throughput measurement of the content and properties of nano-sized bioparticles with single-particle profiler. Nat. Biotechnol. 42, 587–590 (2024).

    Article  CAS  PubMed  Google Scholar 

  54. Rentel, C. et al. Determination of oligonucleotide deamination by high resolution mass spectrometry. J. Pharm. Biomed. Anal. 173, 56–61 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. DeCollibus, D. P. et al. Considerations for the terminal sterilization of oligonucleotide drug products. Nucleic Acid Ther. 33, 159–177 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rentel, C. et al. Assay, purity and impurity profile of phosphorothioate oligonucleotide therapeutics by ion pair-HPLC-MS. Nucleic Acid Ther. 32, 206–220 (2022).

    Article  CAS  PubMed  Google Scholar 

  57. Pavc, D. et al. Understanding self-assembly at molecular level enables controlled design of DNA G-wires of different properties. Nat. Commun. 13, 1062 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ebrahimi, S. B. & Samanta, D. Engineering protein-based therapeutics through structural and chemical design. Nat. Commun. 14, 2411 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tao, L., Faig, A. & Uhrich, K. E. Liposomal stabilization using a sugar-based, PEGylated amphiphilic macromolecule. J. Colloid Interface Sci. 431, 112–116 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Hadley, P. et al. Precise surface functionalization of PLGA particles for human T cell modulation. Nat. Protoc. 18, 3289–3321 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cheng, F. et al. Research advances on the stability of mRNA vaccines. Viruses 15, 668 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang, L. et al. Effect of mRNA-LNP components of two globally-marketed COVID-19 vaccines on efficacy and stability. npj Vaccines 8, 156 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Li, Y. et al. Aromatized liposomes for sustained drug delivery. Nat. Commun. 14, 6659 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Doan, T. N. K., Davis, M. M. & Croyle, M. A. Identification of film-based formulations that move mRNA lipid nanoparticles out of the freezer. Mol. Ther. Nucleic Acids 35, 102179 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ruppl, A. et al. Don’t shake it! Mechanical stress testing of mRNA-lipid nanoparticles. Eur. J. Pharm. Biopharm. 198, 114265 (2024).

    Article  CAS  PubMed  Google Scholar 

  66. Miller, M. A., Engstrom, J. D., Ludher, B. S. & Johnston, K. P. Low viscosity highly concentrated injectable nonaqueous suspensions of lysozyme microparticles. Langmuir 26, 1067–1074 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Deokar, V., Sharma, A., Mody, R. & Volety, S. M. Comparison of strategies in development and manufacturing of low viscosity, ultra-high concentration formulation for IgG1 antibody. J. Pharm. Sci. 109, 3579–3589 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Watt, R. P., Khatri, H. & Dibble, A. R. G. Injectability as a function of viscosity and dosing materials for subcutaneous administration. Int. J. Pharm. 554, 376–386 (2019).

    Article  CAS  PubMed  Google Scholar 

  69. Farzan, M., Ross, A., Müller, C. & Allmendinger, A. Liquid crystal phase formation and non-Newtonian behavior of oligonucleotide formulations. Eur. J. Pharm. Biopharm. 181, 270–281 (2022).

    Article  PubMed  Google Scholar 

  70. Maksudov, F. et al. Therapeutic phosphorodiamidate morpholino oligonucleotides: physical properties, solution structures and folding thermodynamics. Mol. Ther. Nucleic Acids 31, 631–647 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bookbinder, L. H. et al. A recombinant human enzyme for enhanced interstitial transport of therapeutics. J. Control. Release 114, 230–241 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Li, B. et al. Accelerating ionizable lipid discovery for mRNA delivery using machine learning and combinatorial chemistry. Nat. Mater. 23, 1002–1008 (2024).

    Article  CAS  PubMed  Google Scholar 

  73. van Meer, L. et al. Injection site reactions after subcutaneous oligonucleotide therapy. Br. J. Clin. Pharmacol. 82, 340–351 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kim, J. et al. Patient-customized oligonucleotide therapy for a rare genetic disease. N. Engl. J. Med. 381, 1644–1652 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. The cost of getting personal. Nat. Med. 25, 1797–1797 (2019).

  76. Lemaitre, M. M. Individualized antisense oligonucleotide therapies: how to approach the challenge of manufacturing these oligos from a chemistry, manufacturing and control-regulatory standpoint. Nucleic Acid Ther. 32, 101–110 (2022).

    Article  CAS  PubMed  Google Scholar 

  77. Andrews, B. I. et al. Sustainability challenges and opportunities in oligonucleotide manufacturing. J. Org. Chem. 86, 49–61 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Images were created using BioRender.com, the PyMOL Molecular Graphics System version 2.0 (Schrödinger, LLC) and Avogadro (an open-source molecular builder and visualization tool, version 1.2.0, http://avogadro.cc/). We acknowledge the use of OpenAI’s ChatGPT (version GPT-4) for proofreading the manuscript. D.S. acknowledges support from start-up funds from The University of Texas at Austin and the Welch Foundation (grant no. F-2209-20240404). Y.L. thanks the US National Institute of Health (GM141931) and the Welch Foundation (F-0020) for support. P.S.D. is supported by NSF grant CBET-1936696.

Author information

Authors and Affiliations

Authors

Contributions

S.B.E. and D.S. conceived the Perspective. S.B.E. and D.S. wrote the paper with input from H.B., S.S., D.F., P.S.D. and Y.L. S.B.E. and D.S. created the figures and tables. All authors reviewed and edited each section of the paper.

Corresponding authors

Correspondence to Sasha B. Ebrahimi or Devleena Samanta.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Engineering thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, S.B., Bhattacharjee, H., Sonti, S. et al. Engineering considerations for next-generation oligonucleotide therapeutics. Nat Chem Eng 1, 741–750 (2024). https://doi.org/10.1038/s44286-024-00152-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44286-024-00152-z

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research