Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Managing dynamic catalyst changes to upgrade reactors and reaction processes

Abstract

Metal nanoparticle catalysts can undergo dynamic structural changes within chemical environments. Reaction processes and reactors are often designed to accommodate or exploit these changes to achieve desired performance targets. Consequently, controlling dynamic structural changes can lead to upgrading of reactors and reaction processes. This Perspective summarizes the characteristic dynamic behaviors of supported metal catalysts and their corresponding reactors in current industrial processes. We explore recent advancements in the programmable changes of metal catalysts by controlling reaction environments and metal–support interactions. These techniques offer avenues for upgrading reactors and reaction routes, aiming to improve efficiency and simplify production processes. The need to upgrade existing reactors also raises demands for managing catalyst dynamic structural changes. This Perspective emphasizes the importance of connecting atomic-scale changes in catalyst structure with industrial-scale reactions and reactors, which will advance research in catalysis and reaction engineering.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conceptual overview of potential dynamic catalyst structural changes.
Fig. 2: Catalyst metal size change and accompanying reactor and process designs.
Fig. 3: Metal leaching in a batch reactor and accompanying reactor and process designs.
Fig. 4: Metal leaching in a fixed-bed reactor with mitigating reactor and process designs.
Fig. 5: Catalyst reconstruction and accommodating reactor and process designs.

Similar content being viewed by others

References

  1. Dhashinamoorthy, A. & Garcia, H. Catalysis by metal nanoparticles embedded on metal–organic frameworks. Chem. Soc. Rev. 41, 5262–5284 (2012).

    Article  Google Scholar 

  2. van Deelen, T. W., Mejía, C. H. & de Jong, K. P. Control of metal–support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal. 2, 955–970 (2019).

    Article  Google Scholar 

  3. Pacchioni, G. & Freund, H.-J. Controlling the charge state of supported nanoparticles in catalysis: lessons from model systems. Chem. Soc. Rev. 47, 8474–8502 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Liu, L. & Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118, 4981–5079 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Otroshchenko, T., Jiang, G., Kondratenko, V. A., Rodemerck, U. & Kondratenko, E. V. Current status and perspectives in oxidative, non-oxidative and CO2-mediated dehydrogenation of propane and isobutane over metal oxide catalysts. Chem. Soc. Rev. 50, 473–527 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Frey, H., Beck, A., Huang, X., van Bokhoven, J. A. & Willinger, M. G. Dynamic interplay between metal nanoparticles and oxide support under redox conditions. Science 376, 982–987 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. Monai, M. et al. Restructuring of titanium oxide overlayers over nickel nanoparticles during catalysis. Science 380, 644–651 (2023).

    Article  CAS  PubMed  Google Scholar 

  8. Matsubu, J. C. et al. Adsorbate-mediated strong metal–support interactions in oxide-supported Rh catalysts. Nat. Chem. 9, 120–127 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Moliner, M. et al. Reversible transformation of Pt nanoparticles into single atoms inside high-silica chabazite zeolite. J. Am. Chem. Soc. 138, 15743–15750 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Tao, F. et al. Reaction-driven restructuring of Rh–Pd and Pt–Pd core–shell nanoparticles. Science 322, 932–934 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Xin, H. et al. Overturning CO2 hydrogenation selectivity with high activity via reaction-induced strong metal–support interactions. J. Am. Chem. Soc. 144, 4874–4882 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Jiang, D. et al. Dynamic and reversible transformations of subnanometre-sized palladium on ceria for efficient methane removal. Nat. Catal. 6, 618–627 (2023).

    Article  CAS  Google Scholar 

  13. Yan, G. et al. Reaction product-driven restructuring and assisted stabilization of a highly dispersed Rh-on-ceria catalyst. Nat. Catal. 5, 119–127 (2022).

    Article  Google Scholar 

  14. Tao, F. et al. Break-up of stepped platinum catalyst surfaces by high CO coverage. Science 327, 850–853 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Corma, A. et al. Exceptional oxidation activity with size-controlled supported gold clusters of low atomicity. Nat. Chem. 5, 775–781 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. He, Y. et al. Size-dependent dynamic structures of supported gold nanoparticles in CO oxidation reaction condition. Proc. Natl Acad. Sci. USA 115, 7700–7705 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu, X. et al. Strong metal–support interactions between gold nanoparticles and ZnO nanorods in CO oxidation. J. Am. Chem. Soc. 134, 10251–10258 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Tang, H. et al. Classical strong metal–support interactions between gold nanoparticles and titanium dioxide. Sci. Adv. 3, e1700231 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dong, J., Fu, Q., Jiang, Z., Mei, B. & Bao, X. Carbide-supported Au catalysts for water–gas shift reactions: a new territory for the strong metal–support interaction effect. J. Am. Chem. Soc. 140, 13808–13816 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Du, P. et al. Single-atom-driven dynamic carburization over Pd1–FeOx catalyst boosting CO2 conversion. Chem 8, 3252–3262 (2022).

    Article  CAS  Google Scholar 

  21. Hansen, T. W., DeLaRiva, A. T., Challa, S. R. & Datye, A. K. Sintering of catalytic nanoparticles: particle migration or Ostwald ripening? Acc. Chem. Res. 46, 1720–1730 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Jones, J. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 353, 150–154 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Kosinov, N., Coumans, F. J. A. G., Uslamin, E., Kapteijn, F. & Hensen, E. J. M. Selective coke combustion by oxygen pulsing during Mo/ZSM-5-catalyzed methane dehydroaromatization. Angew. Chem. Int. Ed. 55, 15086–15090 (2016).

    Article  CAS  Google Scholar 

  24. Li, F. et al. Interplay of electrochemical and electrical effects induces structural transformations in electrocatalysts. Nat. Catal. 4, 479–487 (2021).

    Article  CAS  Google Scholar 

  25. Chen, H. et al. Photoinduced strong metal–support interaction for enhanced catalysis. J. Am. Chem. Soc. 143, 8521–8526 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, J., Zhu, D., Yan, J. & Wang, C.-A. Strong metal–support interactions induced by an ultrafast laser. Nat. Commun. 12, 6665 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pham, H. N., Sattler, J. J. H. B., Weckhuysen, B. M. & Datye, A. K. Role of Sn in the regeneration of Pt/γ-Al2O3 light alkane dehydrogenation catalysts. ACS Catal. 6, 2257–2264 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Caspary, K. J., Gehrke, H., Heinrit-Adrian, M. & Schwefer, M. in Handbook of Heterogeneous Catalysis: Online (eds Ertl, G. et al.) 3206–3229 (Wiley-VCH, 2008).

  29. Cottrell, P. R. & Fettis, M. E. Process for the dehydrogenation of hydrocarbons. US patent 5087792 (1992).

  30. Williamson, R. R., Fettis, M. E. & Cottrell, P. R. Moving bed regeneration process with combined drying and dispersion steps. US patent 5457077 (1993).

  31. Moore, M. A., Sechrist, P. A. & Glover, B. K. Processes and apparatuses for regenerating catalyst particles. US patent 20120322649 (2012).

  32. Tao, F. & Salmeron, M. Surface restructuring and predictive design of heterogeneous catalysts. Science 386, eadq0102 (2024).

    Article  CAS  PubMed  Google Scholar 

  33. Zhong, L. et al. Cobalt carbide nanoprisms for direct production of lower olefins from syngas. Nature 538, 84–87 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Liu, L. et al. Dealuminated beta zeolite reverses Ostwald ripening for durable copper nanoparticle catalysts. Science 383, 94–101 (2024).

    Article  CAS  PubMed  Google Scholar 

  35. Frassoldati, A., Pinel, C. & Besson, M. Aerobic oxidation of secondary pyridine-derivative alcohols in the presence of carbon-supported noble metal catalysts. Catal. Today 203, 133–138 (2013).

    Article  CAS  Google Scholar 

  36. Zhao, J. et al. Suppressing metal leaching in a supported Co/SiO2 catalyst with effective protectants in the hydroformylation reaction. ACS Catal. 10, 914–920 (2020).

    Article  CAS  Google Scholar 

  37. Puskas, I. & James D. E. Process for preparation of palladium on carbon catalysts used in the purification of crude terephthalic acid. US patent 4421676 (1983).

  38. Xu, Y. et al. Suppressing C–C bond dissociation for efficient ethane dehydrogenation over the isolated Co(II) sites in SAPO-34. ACS Catal. 11, 13001–13019 (2021).

    Article  CAS  Google Scholar 

  39. Chung, K. et al. Non-oxidized bare copper nanoparticles with surface excess electrons in air. Nat. Nanotechnol. 7, 285–291 (2022).

    Article  Google Scholar 

  40. Liu, Y. et al. Efficient catalytic production of hydrogen peroxide using tin-containing zeolite fixed palladium nanoparticles with oxidation resistance. Angew. Chem. Int. Ed. 62, e202312377 (2023).

    Article  CAS  Google Scholar 

  41. Li, S., Lin, L., Wang, Z. & Ma, D. Direct utilization of crude and waste H2 via CO-tolerant hydrogenation. The Innovation 4, 100353 (2023).

    Article  CAS  PubMed  Google Scholar 

  42. Prieto, G., Zečević, J., Friedrich, H., de Jong, K. P. & de Jongh, P. E. Towards stable catalysts by controlling collective properties of supported metal nanoparticles. Nat. Mater. 12, 34–39 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Li, D. et al. Induced activation of the commercial Cu/ZnO/Al2O3 catalyst for the steam reforming of methanol. Nat. Catal. 5, 99–108 (2022).

    Article  CAS  Google Scholar 

  44. Yao, D. et al. Scalable synthesis of Cu clusters for remarkable selectivity control of intermediates in consecutive hydrogenation. Nat. Commun. 14, 1123 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Otor, H. O., Steiner, J. B., García-Sancho, C. & Alba-Rubio, A. C. Encapsulation methods for control of catalyst deactivation: a review. ACS Catal. 10, 7630–7656 (2020).

    Article  CAS  Google Scholar 

  46. Wang, L., Wang, L., Meng, X. & Xiao, F.-S. New strategies for the preparation of sinter-resistant metal-nanoparticle-based catalysts. Adv. Mater 31, 1901905 (2019).

    Article  CAS  Google Scholar 

  47. Motagamwala, A. H., Almallahi, R., Wortman, J., Igenegbai, V. O. & Linic, S. Stable and selective catalysts for propane dehydrogenation operating at thermodynamic limit. Science 373, 217–222 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Pieck, C., Jablonski, E. L. & Parera, J. M. Sintering-redispersion of Pt-Re/Al2O3 during regeneration. Appl. Catal. 62, 47–60 (1990).

    Article  CAS  Google Scholar 

  49. Kim, G. H. et al. Effect of oxychlorination treatment on the regeneration of Pt–Sn/Al2O3 catalyst for propane dehydrogenation. Res. Chem. Intermed. 42, 351–365 (2016).

    Article  CAS  Google Scholar 

  50. Monai, M., Gambino, M., Wannakao, S. & Weckhuysen, B. M. Propane to olefins tandem catalysis: a selective route towards light olefins production. Chem. Soc. Rev. 50, 11503–11529 (2021).

    Article  CAS  PubMed  Google Scholar 

  51. Zhao, D. et al. In situ formation of ZnOx species for efficient propane dehydrogenation. Nature 599, 234–238 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shao, H. et al. The active sites and catalytic properties of CrOx/Zn–Al2O3 catalysts for propane dehydrogenation. Appl. Catal. A 637, 118610 (2022).

    Article  CAS  Google Scholar 

  53. Plessow, P. N. & Abild-Pedersen, F. Sintering of Pt nanoparticles via volatile PtO2: simulation and comparison with experiments. ACS Catal. 6, 7098–7108 (2016).

    Article  CAS  Google Scholar 

  54. Wang, Y. et al. Boosting selectivity and stability on Pt/BN catalysts for propane dehydrogenation via calcination & reduction−mediated strong metal–support interaction. J. Energy Chem. 67, 451–457 (2022).

    Article  CAS  Google Scholar 

  55. Xiong, H. et al. Thermally stable and regenerable platinum–tin clusters for propane dehydrogenation prepared by atom trapping on ceria. Angew. Chem. Int. Ed. 56, 8986–8991 (2017).

    Article  CAS  Google Scholar 

  56. Goodman, E. D. et al. Catalyst deactivation via decomposition into single atoms and the role of metal loading. Nat. Catal. 2, 748–755 (2019).

    Article  CAS  Google Scholar 

  57. Kwak, J. H. et al. Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of platinum on γ-Al2O3. Science 325, 1670–1673 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Yao, H. C., Stepien, H. K. & Gandhi, H. S. Metal–support interaction in automotive exhaust catalysts: Rh–washcoat interaction. J. Catal. 61, 547–550 (1980).

    Article  CAS  Google Scholar 

  59. Zhang, X. et al. Reversible loss of core–shell structure for Ni–Au bimetallic nanoparticles during CO2 hydrogenation. Nat. Catal. 3, 411–417 (2020).

    Article  CAS  Google Scholar 

  60. Liu, L. et al. Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nat. Mater. 16, 132–138 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Liu, L. et al. Direct assessment of confinement effect in zeolite-encapsulated subnanometric metal species. Nat. Commun. 13, 821 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang, J. et al. Sinter-resistant metal nanoparticle catalysts achieved by immobilization within zeolite crystals via seed-directed growth. Nat. Catal. 1, 540–546 (2018).

    Article  CAS  Google Scholar 

  63. Liu, L. et al. Regioselective generation and reactivity control of subnanometric platinum clusters in zeolites for high-temperature catalysis. Nat. Mater. 18, 866–873 (2017).

    Article  Google Scholar 

  64. Liu, L. et al. Structural modulation and direct measurement of subnanometric bimetallic PtSn clusters confined in zeolites. Nat. Catal. 3, 628–638 (2020).

    Article  CAS  Google Scholar 

  65. Dou, X. et al. Regioselective hydroformylation with subnanometre Rh clusters in MFI zeolite. Nat. Catal. 7, 666–677 (2024).

    Article  CAS  Google Scholar 

  66. Liu, L. et al. Evolution and stabilization of subnanometric metal species in confined space by in situ TEM. Nat. Commun. 9, 574 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Farpón, M. G. et al. Rhodium single-atom catalyst design through oxide support modulation for selective gas-phase ethylene hydroformylation. Angew. Chem. Int. Ed. 62, e202214048 (2023).

    Article  Google Scholar 

  68. Chen, J.-S., Vasiliev, A. N., Panarello, A. P. & Khinast, J. G. Pd-leaching and Pd-removal in Pd/C-catalyzed Suzuki couplings. Appl. Catal. A 325, 76–86 (2007).

    Article  CAS  Google Scholar 

  69. Cantillo, D. & Oliver Kappe, C. Immobilized transition metals as catalysts for cross-couplings in continuous flow—a critical assessment of the reaction mechanism and metal leaching. ChemCatChem 6, 3286–3305 (2014).

    Article  CAS  Google Scholar 

  70. Hebrard, F. & Kalck, P. Cobalt-catalyzed hydroformylation of alkenes: generation and recycling of the carbonyl species, and catalytic cycle. Chem. Rev. 109, 4272–4282 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Fassbach, T. A., Ji, J.-M., Vorholt, A. J. & Leitner, W. Recycling of homogeneous catalysts—basic principles, industrial practice, and guidelines for experiments and evaluation. ACS Catal. 14, 7289–7298 (2024).

    Article  CAS  Google Scholar 

  72. Beller, M., Cornils, B., Frohning, C. D. & Kohlpaintner, C. W. Progress in hydroformylation and carbonylation. J. Mol. Catal. A 104, 17–85 (1995).

    Article  CAS  Google Scholar 

  73. Cai, Z. et al. Hydroformylation of 1-hexene over ultrafine cobalt nanoparticle catalysts. J. Mol. Catal. A 330, 94–98 (2010).

    Article  CAS  Google Scholar 

  74. Luo, S. et al. Light-induced dynamic restructuring of Cu active sites on TiO2 for low-temperature H2 production from methanol and water. J. Am. Chem. Soc. 145, 20530–20538 (2023).

    Article  CAS  PubMed  Google Scholar 

  75. Fan, Y. et al. Water-assisted oxidative redispersion of Cu particles through formation of Cu hydroxide at room temperature. Nat. Commun. 15, 3046 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Behrens, M. et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 336, 893–897 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Li, H. et al. Physical regulation of copper catalyst with a hydrophobic promoter for enhancing CO2 hydrogenation to methanol. The Innovation 4, 100445 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Xu, C. et al. Development of stable water−resistant Cu-based catalyst for methanol synthesis. Appl. Catal. A 623, 118299 (2021).

    Article  CAS  Google Scholar 

  79. Sun, X., Wang, P., Shao, Z., Cao, X. & Hu, P. A first-principles microkinetic study on the hydrogenation of carbon dioxide over Cu(211) in the presence of water. Sci. China Chem. 62, 1686–1697 (2019).

    Article  CAS  Google Scholar 

  80. Li, H. et al. Na+-gated water-conducting nanochannels for boosting CO2 conversion to liquid fuels. Science 367, 667–671 (2020).

    Article  CAS  PubMed  Google Scholar 

  81. Chen, S. et al. Defective TiOx overlayers catalyze propane dehydrogenation promoted by base metals. Science 385, 295–300 (2024).

    Article  CAS  PubMed  Google Scholar 

  82. Almallahi, R., Wortman, J. & Linic, S. Overcoming limitations in propane dehydrogenation by codesigning catalyst–membrane systems. Science 383, 1325–1331 (2024).

    Article  CAS  PubMed  Google Scholar 

  83. Morejudo, S. H. et al. Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor. Science 353, 563–566 (2016).

    Article  CAS  PubMed  Google Scholar 

  84. Tang, M. et al. Oscillatory active state of a Pd nanocatalyst identified by in situ capture of the instantaneous structure–activity change at the atomic scale. J. Am. Chem. Soc. 146, 18341–18349 (2024).

    Article  CAS  PubMed  Google Scholar 

  85. Cortés, E., Grzeschik, R., Maier, S. A. & Schlücker, S. Experimental characterization techniques for plasmon-assisted chemistry. Nat. Rev. Chem. 6, 259–274 (2022).

    Article  PubMed  Google Scholar 

  86. Zhai, H. & Alexandrova, A. N. Local fluxionality of surface-deposited cluster catalysts: the case of Pt7 on Al2O3. J. Phys. Chem. Lett. 9, 1696–1702 (2018).

    Article  CAS  PubMed  Google Scholar 

  87. Liu, Y. et al. Progress and challenges in structural, in situ and operando characterization of single-atom catalysts by X-ray-based synchrotron radiation techniques. Chem. Soc. Rev. 53, 11850–11887 (2024).

    Article  CAS  PubMed  Google Scholar 

  88. Xu, L. et al. Formation of active sites on transition metals through reaction-driven migration of surface atoms. Science 380, 70–76 (2023).

    Article  CAS  PubMed  Google Scholar 

  89. Wang, T. et al. Nature of metal–support interaction for metal catalysts on oxide supports. Science 386, 915–920 (2024).

    Article  CAS  PubMed  Google Scholar 

  90. Avanesian, T. et al. Quantitative and atomic-scale view of CO-induced Pt nanoparticle surface reconstruction at saturation coverage via DFT calculations coupled with in situ TEM and IR. J. Am. Chem. Soc. 139, 4551–4558 (2017).

    Article  CAS  PubMed  Google Scholar 

  91. Marimuthu, A., Zhang, J. & Linic, S. Tuning selectivity in propylene epoxidation by plasmon mediated photo-switching of Cu oxidation state. Science 339, 1590–1593 (2013).

    Article  CAS  PubMed  Google Scholar 

  92. Xie, B. et al. Synergistic ultraviolet and visible light photoactivation enables intensified low-temperature methanol synthesis over copper/zinc oxide/alumina. Nat. Commun. 11, 1615 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yang, J. et al. Potential-driven restructuring of Cu single atoms to nanoparticles for boosting the electrochemical reduction of nitrate to ammonia. J. Am. Chem. Soc. 144, 12062–12071 (2022).

    Article  CAS  PubMed  Google Scholar 

  94. Yu, J. et al. Ultra-high thermal stability of sputtering reconstructed Cu-based catalysts. Nat. Commun. 12, 7209 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Gopeesingh, J. et al. Resonance-promoted formic acid oxidation via dynamic electrocatalytic modulation. ACS Catal. 10, 9932–9942 (2020).

    Article  CAS  Google Scholar 

  96. Ardagh, M. A., Abdelrahman, O. A. & Dauenhauer, P. J. Principles of dynamic heterogeneous catalysis: surface resonance and turnover frequency response. ACS Catal. 9, 6929–6937 (2019).

    Article  CAS  Google Scholar 

  97. Ardagh, M. A. et al. Catalytic resonance theory: parallel reaction pathway control. Chem. Sci. 11, 3501–3510 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge support by the National Key Research and Development Program of China (2022YFA1503502), the National Natural Science Foundation of China (22288101 and 22241801), the Zhejiang Provincial Basic Public Welfare Project (LD24E030003) and Qizhen Funding of Zhejiang University (226-2023-00035, Fundamental Research Funds for the Central Universities).

Author information

Authors and Affiliations

Authors

Contributions

H. Wang and L.W. conceived the concept of this paper. Y.W., Q.L. and H. Wu provided helpful discussions. All authors participated in preparing the paper. F.-S.X. and L.W. supervised the project.

Corresponding authors

Correspondence to Feng-Shou Xiao or Liang Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Engineering thanks Lichen Liu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Wu, Y., Luo, Q. et al. Managing dynamic catalyst changes to upgrade reactors and reaction processes. Nat Chem Eng 2, 169–180 (2025). https://doi.org/10.1038/s44286-025-00199-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44286-025-00199-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing