Abstract
Despite being relatively neglected until the early 2000s, seagrass ecosystems are now recognized as critical habitats supporting biodiversity and ecosystem services including carbon sequestration, coastal protection and food supply. In this Review, we discuss the structure and function of seagrass beds, the ways that they support biodiversity and ecosystem services, their dominant threats, and the most promising conservation and restoration opportunities. Seagrass ecosystems support biologically diverse communities, and food web integrity within these communities can reciprocally maintain healthy seagrass ecosystems. Numerous anthropogenic pressures caused persistent declines of 1% to 2% per year in global extent during the twentieth century, but a range of policies, primarily focused on reducing coastal water pollution, have attenuated or reversed losses in some regions. Uncertainty about the global and regional distributions of seagrasses and their trajectories, as well as the high costs of restoration, undermine conservation progress. An escalation in research effort is required to improve projections of seagrass responses to climate change and to identify cost-effective and scalable restoration approaches.
Key points
-
In shallow coastal waters, seagrasses form meadows that persist through clonal growth and, in some species, sporadic sexual reproduction. The configuration of the meadows reflects seagrass health, with patchy landscapes indicating biological or chemical disturbance.
-
Seagrass meadows are critical habitats for biodiversity, supporting 121 megafauna species of conservation concern and 746 reported fish species contributing over 20% of fishery landings.
-
Seagrass meadows have an estimated global extent of at least 277,000 square kilometres. Owing to several human pressures, seagrass extent has declined at an annual rate of about 1–2% over the past century. Five per cent of seagrass species are currently listed as endangered.
-
The ecosystem services provided by seagrass are valued at US $6.4 trillion annually. Awareness of this value has propelled efforts to conserve and restore seagrass to deliver climate mitigation, climate adaptation and biodiversity benefits.
-
In many locations, seagrass ecosystems are on a path to recovery owing to water quality improvement, area-based protection and restoration. Of known seagrass area, 23.9% is now included in marine protected areas, and nearly 2,000 seagrass restoration projects are reported.
-
Future research priorities include using novel technologies to complete gaps in the global inventory of seagrass ecosystems, and to control seagrass reproductive output and design cost-effective, scalable restoration techniques. Management plans should focus on delivering balanced seagrass food webs.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
118,99 € per year
only 9,92 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Hemminga, M. A. & Duarte, C. M. Seagrass Ecology (Cambridge Univ. Press, 2000).
Short, F., Carruthers, T., Dennison, W. & Waycott, M. Global seagrass distribution and diversity: a bioregional model. J. Exp. Mar. Biol. Ecol. 350, 3–20 (2007).
United Nations Environment Programme. Out of the Blue: The Value of Seagrasses to the Environment and to People (UNEP, 2020).
Hughes, A. R., Williams, S. L., Duarte, C. M., Heck, K. L. Jr & Waycott, M. Associations of concern: declining seagrasses and threatened dependent species. Front. Ecol. Environ. 7, 242–246 (2009).
Unsworth, R. K., Nordlund, L. M. & Cullen‐Unsworth, L. C. Seagrass meadows support global fisheries production. Conserv. Lett. 12, e12566 (2018).
Ruiz-Frau, A., Gelcich, S., Hendriks, I. E., Duarte, C. M. & Marba, N. Current state of seagrass ecosystem services: research and policy integration. Ocean Coast. Manag. 149, 107–115 (2017).
Duarte, C. M., Dennison, W. C., Orth, R. J. & Carruthers, T. J. The charisma of coastal ecosystems: addressing the imbalance. Estuar. Coasts 31, 233–238 (2008).
Waycott, M. et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl Acad. Sci. USA 106, 12377–12381 (2009).
Mcleod, E. et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 9, 552–560 (2011).
Fourqurean, J. W. et al. Seagrass ecosystems as a globally significant carbon stock. Nat. Geosci. 5, 505–509 (2012).
Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I. & Marbà, N. The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Change 3, 961–968 (2013).
Gattuso, J. P. et al. Ocean solutions to address climate change and its effects on marine ecosystems. Front. Mar. Sci. 5, 410554 (2018).
The Habitats Directive. European Union https://environment.ec.europa.eu/topics/nature-and-biodiversity/habitats-directive_en (1992).
Water Framework Directive. European Union https://environment.ec.europa.eu/topics/water/water-framework-directive_en (2000).
The Marine Strategy Framework Directive. European Union https://research-and-innovation.ec.europa.eu/research-area/environment/oceans-and-seas/eu-marine-strategy-framework-directive_en (2008).
The OSPAR Agreement. OSPAR Commission https://www.ospar.org/convention/agreements (2018).
The Posidonia Decree. Parliament of the Balearic Islands https://atlasposidonia.com/en/conservation-in-the-balearic-islands/ (2018).
Fortes, M. D. Seagrass ecosystem conservation in Southeast Asia needs to link science to policy and practice. Ocean. Coast. Manag. 159, 51–56 (2018).
Fu, C., Steckbauer, A., Mann, H. & Duarte, C. M. Achieving the Kunming–Montreal global biodiversity targets for blue carbon ecosystems. Nat. Rev. Earth Environ. 5, 538–552 (2024).
Orth, R. J. & Heck, K. L. Jr. The dynamics of seagrass ecosystems: history, past accomplishments, and future prospects. Estuar. Coasts 46, 1653–1676 (2023).
Nordlund, L. M. et al. One hundred priority questions for advancing seagrass conservation in Europe. Plants People Planet 6, 587–603 (2024).
Duarte, C. M. Seagrass depth limits. Aquat. Bot. 40, 363–377 (1991).
Marbà, N., Jordà, G., Bennett, S. & Duarte, C. M. Seagrass thermal limits and vulnerability to future warming. Front. Mar. Sci. 9, 860826 (2022).
Plaisted, H. K. et al. Influence of rising water temperature on the temperate seagrass species eelgrass (Zostera marina L.) in the northeast USA. Front. Mar. Sci. 9, 920699 (2022).
York, P. H. et al. Physiological and morphological responses of the temperate seagrass Zostera muelleri to multiple stressors: investigating the interactive effects of light and temperature. PLoS ONE 8, e76377 (2013).
Touchette, B. W. Seagrass–salinity interactions: physiological mechanisms used by submersed marine angiosperms for a life at sea. J. Exp. Mar. Biol. Ecol. 350, 194–215 (2007).
Dennison, W. C. et al. Assessing water quality with submersed aquatic vegetation: habitat requirements as barometers of Chesapeake Bay health. BioScience 43, 86–94 (1993).
Jahnke, M. et al. Should we sync? Seascape‐level genetic and ecological factors determine seagrass flowering patterns. J. Ecol. 103, 1464–1474 (2015).
Diaz-Almela, E., Marbà, N. & Duarte, C. M. Consequences of Mediterranean warming events in seagrass (Posidonia oceanica) flowering records. Glob. Chang. Biol. 13, 224–235 (2007).
Marbà, N. & Duarte, C. M. Rhizome elongation and seagrass clonal growth. Mar. Ecol. Prog. Ser. 174, 269–280 (1998).
Sintes, T., Marbà, N. & Duarte, C. M. Modeling nonlinear seagrass clonal growth: assessing the efficiency of space occupation across the seagrass flora. Estuar. Coasts 29, 72–80 (2006).
Sintes, T., Marbà, N., Duarte, C. M. & Kendrick, G. A. Nonlinear processes in seagrass colonisation explained by simple clonal growth rules. Oikos 108, 165–175 (2005).
Weatherall, E. J., Jackson, E. L., Hendry, R. A. & Campbell, M. L. Quantifying the dispersal potential of seagrass vegetative fragments: a comparison of multiple subtropical species. Estuar. Coast. Shelf Sci. 169, 207–215 (2016).
Lai, S. et al. An agent-based model approach to assessing the role of vegetative fragments in seagrass connectivity. Ecol. Model. 487, 110528 (2024).
Arnaud-Haond, S. et al. Implications of extreme life span in clonal organisms: millenary clones in meadows of the threatened seagrass Posidonia oceanica. PLoS ONE 7, e30454 (2012).
Marbà, N., Hemminga, M. A. & Duarte, C. M. Resource translocation within seagrass clones: allometric scaling to plant size and productivity. Oecologia 150, 362–372 (2006).
Roiloa, S. R., Xue, W., Dong, B. C. & Yu, F. H. Ecological implications of plant clonality. Flora 309, 152420 (2023).
Marbà, N., Cebrián, J., Enríquez, S. & Duarte, C. M. Migration of large-scale subaqueous bedforms measured with seagrasses (Cymodocea nodosa) as tracers. Limnol. Oceanogr. 39, 126–133 (1994).
Ruiz-Reynes, D. et al. Fairy-circle landscapes under the sea. Sci. Adv. 3, e1603262 (2017).
Rozenfeld, A. F. et al. Spectrum of genetic diversity and networks of clonal organisms. J. R. Soc. Interf. 4, 1093–1102 (2007).
Arnaud-Haond, S. et al. Disentangling the influence of mutation and migration in clonal seagrasses using the genetic diversity spectrum for microsatellites. J. Heredity 105, 532–541 (2014).
Barrett, S. C. Influences of clonality on plant sexual reproduction. Proc. Natl Acad. Sci. USA 112, 8859–8866 (2015).
Vallejo-Marín, M., Dorken, M. E. & Barrett, S. C. The ecological and evolutionary consequences of clonality for plant mating. Annu. Rev. Ecol. Evol. Syst. 41, 193–213 (2010).
Kendrick, G. A. et al. The central role of dispersal in the maintenance and persistence of seagrass populations. Bioscience 62, 56–65 (2012).
Clay, K. & Kover, P. X. The Red Queen hypothesis and plant/pathogen interactions. Annu. Rev. Phytopathol. 34, 29–50 (1996).
Duffy, J. E. Biodiversity and the functioning of seagrass ecosystems. Mar. Ecol. Prog. Ser. 311, 233–250 (2006).
Boström, C., Pittman, S. J., Simenstad, C. & Kneib, R. T. Seascape ecology of coastal biogenic habitats: advances, gaps, and challenges. Mar. Ecol. Prog. Ser. 427, 191–217 (2011).
Bell, S. S., Fonseca, M. S. & Stafford, N. B. in Seagrasses: Biology, Ecology and Conservation (eds Larkum, A. W. D. et al.) 625–645 (Springer, 2007).
Borum, J. et al. Eelgrass fairy rings: sulfide as inhibiting agent. Mar. Biol. 161, 351–358 (2014).
Ruiz-Reynés, D. et al. Self-organized sulfide-driven traveling pulses shape seagrass meadows. Proc. Natl Acad. Sci. USA 120, e2216024120 (2023).
Scott, A. L., York, P. H. & Rasheed, M. A. Herbivory has a major influence on structure and condition of a Great Barrier Reef subtropical seagrass meadow. Estuar. Coasts 44, 506–521 (2021).
Christianen, M. J. et al. Seagrass ecosystem multifunctionality under the rise of a flagship marine megaherbivore. Glob. Change Biol. 29, 215–230 (2023).
Samper-Villarreal, J., Moya-Ramírez, J. & Cortés, J. Megaherbivore exclusion led to more complex seagrass canopies and increased biomass and sediment Corg pools in a tropical meadow. Front. Mar. Sci. 9, 945783 (2022).
Campbell, J. E. et al. Herbivore effects increase with latitude across the extent of a foundational seagrass. Nat. Ecol. Evol. 8, 663–675 (2024).
Gangal, M. et al. Sequential overgrazing by green turtles causes archipelago-wide functional extinctions of seagrass meadows. Biol. Conserv. 260, 109195 (2021).
van der Heide, T. et al. Ecosystem engineering by seagrasses interacts with grazing to shape an intertidal landscape. PLoS ONE 7, e42060 (2012).
Gutiérrez, J. L. et al. in Functioning of Estuaries and Coastal Ecosystems Vol. 7 Treatise on Estuarine and Coastal Science Series (eds Heip, C. H. R. et al.) Ch. 5, 53–81 (Elsevier, 2011).
Unsworth, R. K., Cullen-Unsworth, L. C., Jones, B. L. & Lilley, R. J. The planetary role of seagrass conservation. Science 377, 609–613 (2022).
Alsaffar, Z. et al. The role of seagrass vegetation and local environmental conditions in shaping benthic bacterial and macroinvertebrate communities in a tropical coastal lagoon. Sci. Rep. 10, 13550 (2020).
McHenry, J. et al. Modelling the biodiversity enhancement value of seagrass beds. Divers. Distrib. 27, 2036–2049 (2021).
Barnes, R. S. K. Biodiversity differentials between seagrass and adjacent bare sediment change along an estuarine gradient. Estuar. Coast. Shelf Sci. 274, 107951 (2022).
Sievers, M. et al. The role of vegetated coastal wetlands for marine megafauna conservation. Trends Ecol. Evol. 34, 807–817 (2019).
Tarquinio, F., Hyndes, G. A., Laverock, B., Koenders, A. & Säwström, C. The seagrass holobiont: understanding seagrass–bacteria interactions and their role in seagrass ecosystem functioning. FEMS Microbiol. Lett. 366, fnz057 (2019).
Borowitzka, M. A., Lavery, P. S. & Keulen, M. in Seagrasses: Biology, Ecology and Conservation (eds Larkum, A. W. D. et al.) 441–461 (Springer, 2007).
Thomsen, M. S. et al. Secondary foundation species enhance biodiversity. Nat. Ecol. Evol. 2, 634–639 (2018).
Boström, C., Jackson, E. L. & Simenstad, C. A. Seagrass landscapes and their effects on associated fauna: a review. Estuar. Coast. Shelf Sci. 68, 383–403 (2006).
Jones, B. L., Nordlund, L. M., Unsworth, R. K., Jiddawi, N. S. & Eklöf, J. S. Seagrass structural traits drive fish assemblages in small-scale fisheries. Front. Mar. Sci. 8, 640528 (2021).
Yarnall, A. H., Byers, J. E., Yeager, L. A. & Fodrie, F. J. Comparing edge and fragmentation effects within seagrass communities: a meta‐analysis. Ecology 103, e3603 (2022).
Boström, C., O’Brien, K., Roos, C. & Ekebom, J. Environmental variables explaining structural and functional diversity of seagrass macrofauna in an archipelago landscape. J. Exp. Mar. Biol. Ecol. 335, 52–73 (2006).
Ren, L., Jensen, K., Porada, P. & Mueller, P. Biota‐mediated carbon cycling — a synthesis of biotic‐interaction controls on blue carbon. Ecol. Lett. 25, 521–540 (2022).
Maxwell, P. S. et al. The fundamental role of ecological feedback mechanisms for the adaptive management of seagrass ecosystems — a review. Biol. Rev. 92, 1521–1538 (2017).
Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).
de Fouw, J. et al. Drought, mutualism breakdown, and landscape-scale degradation of seagrass beds. Curr. Biol. 26, 1051–1056 (2016).
Atwood, T. B. et al. Predators help protect carbon stocks in blue carbon ecosystems. Nat. Clim. Change 5, 1038–1045 (2015).
do Amaral Camara Lima, M., Bergamo, T. F., Ward, R. D. & Joyce, C. B. A review of seagrass ecosystem services: providing nature-based solutions for a changing world. Hydrobiologia 850, 2655–2670 (2023).
Nordlund, L. M., Unsworth, R. K., Gullström, M. & Cullen‐Unsworth, L. C. Global significance of seagrass fishery activity. Fish Fish. 19, 399–412 (2018).
Cullen-Unsworth, L. C. et al. Seagrass meadows globally as a coupled social–ecological system: Implications for human wellbeing. Mar. Pollut. Bull. 83, 387–397 (2014).
Mtwana Nordlund, L., Koch, E. W., Barbier, E. B. & Creed, J. C. Seagrass ecosystem services and their variability across genera and geographical regions. PLoS ONE 11, e0163091 (2016).
Burckhalter, D. Eelgrass: a traditional Comcaac (Seri) seafood and a revolutionary source of grain. J. Southwest. 63, 369–384 (2021).
Kim, D. H. et al. Nutritional and bioactive potential of seagrasses: a review. South Afr. J. Botany 137, 216–227 (2021).
Manfra, L. et al. Towards sustainable management of beach-cast seagrass in Mediterranean coastal areas. Sustainability 16, 756 (2024).
Grimm, K. E., Archibald, J. L., Bonilla-Anariba, S. E., Bood, N. & Canty, S. W. Framework for fostering just and equitable seagrass policy, management, and social-ecological outcomes: lessons learned from Belizean marine resource managers. Mar. Policy 152, 105606 (2023).
Macreadie, P. I. et al. Blue carbon as a natural climate solution. Nat. Rev. Earth Environ. 2, 826–839 (2021).
de Smit, J. C. et al. Habitat-forming species trap microplastics into coastal sediment sinks. Sci. Total. Environ. 772, 145520 (2021).
Sanchez-Vidal, A., Canals, M., De Haan, W. P., Romero, J. & Veny, M. Seagrasses provide a novel ecosystem service by trapping marine plastics. Sci. Rep. 11, 254 (2021).
Gacia, E. & Duarte, C. M. Sediment retention by a Mediterranean Posidonia oceanica meadow: the balance between deposition and resuspension. Estuar. Coast. Shelf Sci. 52, 505–514 (2001).
de Mendoza, F. P. et al. Sediment dynamics and resuspension processes in a shallow-water Posidonia oceanica meadow. Mar. Geol. 404, 174–186 (2018).
Forrester, J., Leonardi, N., Cooper, J. R. & Kumar, P. Seagrass as a nature-based solution for coastal protection. Ecol. Eng. 206, 107316 (2024).
James, R. K. et al. Tropical biogeomorphic seagrass landscapes for coastal protection: persistence and wave attenuation during major storms events. Ecosystems 24, 301–318 (2021).
Christianen, M. J. et al. Low-canopy seagrass beds still provide important coastal protection services. PLoS ONE 8, e62413 (2013).
James, R. K. et al. Maintaining tropical beaches with seagrass and algae: a promising alternative to engineering solutions. BioScience 69, 136–142 (2019).
Krause-Jensen, D., Serrano, O., Apostolaki, E. T., Gregory, D. J. & Duarte, C. M. Seagrass sedimentary deposits as security vaults and time capsules of the human past. Ambio 48, 325–335 (2019).
Costanza, R. et al. Turner changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158 (2014).
Macreadie, P. I. et al. Operationalizing marketable blue carbon. One Earth 5, 485–492 (2022).
McKenzie, L. J. et al. The global distribution of seagrass meadows. Environ. Res. Lett. 15, 074041 (2020).
Dunic, J. C., Brown, C. J., Connolly, R. M., Turschwell, M. P. & Côté, I. M. Long‐term declines and recovery of meadow area across the world’s seagrass bioregions. Glob. Change Biol. 27, 4096–4109 (2021).
Orth, R. J. et al. A global crisis for seagrass ecosystems. BioScience 56, 987–996 (2006).
Turschwell, M. P. et al. Anthropogenic pressures and life history predict trajectories of seagrass meadow extent at a global scale. Proc. Natl Acad. Sci. USA 118, e2110802118 (2021).
Gallagher, A. J. et al. Tiger sharks support the characterization of the world’s largest seagrass ecosystem. Nat. Commun. 13, 6328 (2022).
UNESCO Marine World Heritage: custodians of the globe’s blue carbon assets. UNESCO https://whc.unesco.org/en/blue-carbon-report/ (2020).
Gouvêa, L., Fragkopoulou, E. B., Araújo, M., Serrão, E. A. & Assis, J. Seagrass biodiversity under the latest‐generation scenarios of projected climate change. J. Biogeogr. 52, 172–185 (2024).
Ralph, P. J., Durako, M. J., Enriquez, S., Collier, C. J. & Doblin, M. A. Impact of light limitation on seagrasses. J. Exp. Mar. Biol. Ecol. 350, 176–193 (2007).
de Los Santos, C. B. et al. Recent trend reversal for declining European seagrass meadows. Nat. Commun. 10, 3356 (2019).
Neumann, B., Vafeidis, A. T., Zimmermann, J. & Nicholls, R. J. Future coastal population growth and exposure to sea-level rise and coastal flooding — a global assessment. PLoS ONE 10, e0118571 (2015).
Fourqurean, J. W. & Robblee, M. B. Florida Bay: a history of recent ecological changes. Estuaries 22, 345–357 (1999).
Arias-Ortiz, A. et al. A marine heatwave drives massive losses from the world’s largest seagrass carbon stocks. Nat. Clim. Change 8, 338–344 (2018).
Grech, A. et al. A comparison of threats, vulnerabilities and management approaches in global seagrass bioregions. Environ. Res. Lett. 7, 024006 (2012).
McArthur, L. C. & Boland, J. W. The economic contribution of seagrass to secondary production in South Australia. Ecol. Model. 196, 163–172 (2006).
Zhang, Y. et al. A review of seagrass bed pollution. Water 15, 3754 (2023).
Fredley, J., Durako, M. J. & Hall, M. O. Multivariate analyses link macrophyte and water quality indicators to seagrass die-off in Florida Bay. Ecol. Indic. 101, 692–701 (2019).
Walker, D. I. & McComb, A. J. Seagrass degradation in Australian coastal waters. Mar. Pollut. Bull. 25, 191–195 (1992).
González-Correa, J. M. et al. Recovery of deep Posidonia oceanica meadows degraded by trawling. J. Exp. Mar. Biol. Ecol. 320, 65–76 (2005).
Herrera, M. et al. Trade-offs and synergies between seagrass ecosystems and fishing activities: a global literature review. Front. Mar. Sci. 9, 781713 (2022).
Fanoro, T. F. R., Scarlet, M. P. & Bandeira, S. O. Intertidal gleaning exclusion as a trigger for seagrass species and fauna recovery and passive seagrass rehabilitation. Diversity 15, 772 (2023).
Okudan, E. S., Demir, V., Kalkan, E. & Karhan, S. Ü. Anchoring damage on seagrass meadows (Posidonia oceanica (L.) Delile) in Fethiye–Göcek specially protected area (eastern Mediterranean Sea, Turkey). J. Coast. Res. 61, 417–420 (2011).
Dunton, K. H. & Schonberg, S. V. Assessment of propeller scarring in seagrass beds of the south Texas coast. J. Coast. Res. Spec. Iss. 37, Fall, 100–110 (2002).
Unsworth, R. K., Williams, B., Jones, B. L. & Cullen-Unsworth, L. C. Rocking the boat: damage to eelgrass by swinging boat moorings. Front. Plant. Sci. 8, 1309 (2017).
Short, F. T. & Neckles, H. A. The effects of global climate change on seagrasses. Aquat. Botany 63, 169–196 (1999).
Marbà, N. & Duarte, C. M. Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality. Glob. Change Biol. 16, 2366–2375 (2010).
Collier, C. J. & Waycott, M. Temperature extremes reduce seagrass growth and induce mortality. Mar. Pollut. Bull. 83, 483–490 (2014).
Jung, C. & Lackmann, G. M. Changes in tropical cyclones undergoing extratropical transition in a warming climate: quasi‐idealized numerical experiments of North Atlantic landfalling events. Geophys. Res. Lett. 50, e2022GL101963 (2023).
Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).
Chefaoui, R. M., Duarte, C. M. & Serrão, E. A. Dramatic loss of seagrass habitat under projected climate change in the Mediterranean Sea. Glob. Change Biol. 24, 4919–4928 (2018).
Daru, B. H. & Rock, B. M. Reorganization of seagrass communities in a changing climate. Nat. Plants 9, 1034–1043 (2023).
Xu, S. et al. Warming northward shifting southern limits of the iconic temperate seagrass (Zostera marina). iScience 25, 104755 (2022).
Bartenfelder, A., Kenworthy, W. J., Puckett, B., Deaton, C. & Jarvis, J. C. The abundance and persistence of temperate and tropical seagrasses at their edge-of-range in the Western Atlantic Ocean. Front. Mar. Sci. 9, 917237 (2022).
Jordà, G., Marbà, N. & Duarte, C. M. Mediterranean seagrass vulnerable to regional climate warming. Nat. Clim. Change 2, 821–824 (2012).
Hyndes, G. A. et al. Accelerating tropicalization and the transformation of temperate seagrass meadows. Bioscience 66, 938–948 (2017).
Santana-Garcon, J. et al. Tropicalization shifts herbivore pressure from seagrass to rocky reef communities. Proc. R. Soc. B 290, 20221744 (2023).
Bennett, S. et al. Climate‐driven impacts of exotic species on marine ecosystems. Glob. Ecol. Biogeogr. 30, 1043–1055 (2021).
Wesselmann, M., Chefaoui, R. M., Marbà, N., Serrao, E. A. & Duarte, C. M. Warming threatens to propel the expansion of the exotic seagrass Halophila stipulacea. Front. Mar. Sci. 8, 759676 (2021).
Short, F. T. et al. Extinction risk assessment of the world’s seagrass species. Biol. Conserv. 144, 1961–1971 (2011).
Cullen-Unsworth, L. C. & Unsworth, R. K. Strategies to enhance the resilience of the world’s seagrass meadows. J. Appl. Ecol. 53, 967–972 (2016).
Unsworth, R. K., Collier, C. J., Waycott, M., Mckenzie, L. J. & Cullen-Unsworth, L. C. A framework for the resilience of seagrass ecosystems. Mar. Pollut. Bull. 100, 34–46 (2015).
Luff, A. L., Sheehan, E. V., Parry, M. & Higgs, N. D. A simple mooring modification reduces impacts on seagrass meadows. Sci. Rep. 9, 20062 (2019).
Russell, M. & Greening, H. Estimating benefits in a recovering estuary: Tampa Bay, Florida. Estuar. Coasts 38, 9–18 (2015).
Nelson, R. H. How to save the Chesapeake Bay TMDL: the critical role of nutrient offsets. William Mary Environ. Law Policy Rev. 38, 319 (2014).
Lefcheck, J. S. et al. Long-term nutrient reductions lead to the unprecedented recovery of a temperate coastal region. Proc. Natl Acad. Sci. USA 115, 3658–3662 (2018).
Krause-Jensen, D., Duarte, C. M., Sand-Jensen, K. & Carstensen, J. Century-long records reveal shifting challenges to seagrass recovery. Glob. Change Biol. 27, 563–575 (2020).
Daru, B. H. & le Roux, P. C. Marine protected areas are insufficient to conserve global marine plant diversity. Glob. Ecol. Biogeogr. 25, 324–334 (2016).
Christiansen, M. J. A. et al. Habitat collapse due to overgrazing threatens turtle conservation in marine protected areas. Proc. R. Soc. B 281, 20132890 (2014).
Duarte, C. M. et al. Rebuilding marine life. Nature 580, 39–51 (2020).
Orth, R. J. et al. Restoration of seagrass habitat leads to rapid recovery of coastal ecosystem services. Sci. Adv. 6, eabc6434 (2020).
Unsworth, R. K. F. et al. Bottlenecks to seed-based seagrass restoration reveal opportunities for improvement. Glob. Ecol. Conserv. 48, e02736 (2023).
van Katwijk, M. M., van Tussenbroek, B. I., Hanssen, S. V., Hendriks, A. J. & Hanssen, L. Rewilding the sea with domesticated seagrass. BioScience 71, 1171–1178 (2021).
van Katwijk, M. M. et al. Global analysis of seagrass restoration: the importance of large‐scale planting. J. Appl. Ecol. 53, 567–578 (2015).
Unsworth, R. K. F. et al. Ten golden rules for restoration to secure resilient and just seagrass social-ecological systems. Plants People Planet 7, 33–48 (2025).
Boudouresque, C.-F., Blanfuné, A., Pergent, G. & Thibaut, T. Restoration of seagrass meadows in the Mediterranean Sea: a critical review of effectiveness and ethical issues. Water 13, 1034 (2021).
Bayraktarov, E. et al. The cost and feasibility of marine coastal restoration. Ecol. Appl. 26, 1055–1074 (2016).
Unsworth, R. K. et al. Global challenges for seagrass conservation. Ambio 48, 801–815 (2019).
Saunders, M. I. et al. Coastal retreat and improved water quality mitigate losses of seagrass from sea level rise. Glob. Change Biol. 19, 2569–2583 (2013).
Bertelli, C. M., Stokes, H. J., Bull, J. C. & Unsworth, R. K. The use of habitat suitability modelling for seagrass: a review. Front. Mar. Sci. 9, 997831 (2022).
Nuyts, S., de Paula Costa, M. D., Macreadie, P. I. & Trevathan-Tackett, S. M. A decision support tool to help identify blue carbon sites for restoration. J. Environ. Manag. 367, 122006 (2024).
Bennett, S., Duarte, C. M., Marbà, N. & Wernberg, T. Integrating within-species variation in thermal physiology into climate change ecology. Phil. Trans. R. Soc. B 374, 20180550 (2019).
Liu, M. et al. Rivers as the largest source of mercury to coastal oceans worldwide. Nat. Geosci. 14, 672–677 (2021).
McDowell, R. W., Noble, A., Pletnyakov, P., Haggard, B. E. & Mosley, L. M. Global mapping of freshwater nutrient enrichment and periphyton growth potential. Sci. Rep. 10, 3568 (2020).
Lambert, V. et al. Connecting targets for catchment sediment loads to ecological outcomes for seagrass using multiple lines of evidence. Mar. Pollut. Bull. 169, 112494 (2021).
Shayka, B. F., Hesselbarth, M. H., Schill, S. R., Currie, W. S. & Allgeier, J. E. The natural capital of seagrass beds in the Caribbean: evaluating their ecosystem services and blue carbon trade potential. Biol. Lett. 19, 20230075 (2023).
Foster, E. et al. Physical disturbance by recovering sea otter populations increases eelgrass genetic diversity. Science 374, 333–336 (2021).
Cabaço, S. & Santos, R. Seagrass reproductive effort as an ecological indicator of disturbance. Ecol. Indic. 23, 116–122 (2012).
Qin, L. Z. et al. Long-term variability in the flowering phenology and intensity of the temperate seagrass Zostera marina in response to regional sea warming. Ecol. Indic. 119, 106821 (2020).
Marbà, N. et al. Iron additions reduce sulfide intrusion and reverse seagrass (Posidonia oceanica) decline in carbonate sediments. Ecosystems 10, 745–756 (2007).
Graham, O. J. et al. Manipulation of the seagrass‐associated microbiome reduces disease severity. Environ. Microbiol. 26, e16582 (2024).
Malandrakis, E. E., Danis, T., Iona, A. & Exadactylos, A. Abiotic stress of seagrasses: recent advances in transcriptomics, genomics, and systems biology. In Systems Biology of Marine Ecosystems (eds Kumar, M. & Ralph, P.) 119–132 (Springer, 2017).
de Fouw, J. et al. A facultative mutualism facilitates European seagrass meadows. Ecography 2023, e06636 (2023).
Valdez, S. R. et al. Positive ecological interactions and the success of seagrass restoration. Front. Mar. Sci. 7, 91 (2020).
Beng, K. C. & Corlett, R. T. Applications of environmental DNA (eDNA) in ecology and conservation: opportunities, challenges and prospects. Biodivers. Conserv. 29, 2089–2121 (2020).
Bessell, T. J. et al. Using eDNA and SCUBA surveys for detection and monitoring of a threatened marine cryptic fish. Aquat. Conserv. Mar. Freshw. Ecosyst. 33, 431–442 (2023).
Wesselmann, M. et al. eDNA reveals the associated metazoan diversity of Mediterranean seagrass sediments. Diversity 14, 549 (2022).
Dalrymple, S. E., Winder, R. & Campbell, E. M. Exploring the potential for plant translocations to adapt to a warming world. J. Ecol. 109, 2264–2270 (2021).
DuBois, K., Pollard, K. N., Kauffman, B. J., Williams, S. L. & Stachowicz, J. J. Local adaptation in a marine foundation species: implications for resilience to future global change. Glob. Change Biol. 28, 2596–2610 (2022).
Jeffery, N. W. et al. Variation in genomic vulnerability to climate change across temperate populations of eelgrass (Zostera marina). Evolut. Appl. 17, e13671 (2024).
Ehlers, A., Worm, B. & Reusch, T. B. Importance of genetic diversity in eelgrass Zostera marina for its resilience to global warming. Mar. Ecol. Prog. Ser. 355, 1–7 (2008).
Nguyen, H. M. et al. Stress memory in seagrasses: first insight into the effects of thermal priming and the role of epigenetic modifications. Front. Plant. Sci. 11, 494 (2020).
Yan, J. et al. A healthy trophic structure underlies the resistance of pristine seagrass beds to nutrient enrichment. Limnol. Oceanogr. 65, 2748–2756 (2020).
O’Dea, C. M., Lavery, P. S., Webster, C. L. & McMahon, K. M. Increased extent of waterfowl grazing lengthens the recovery time of a colonizing seagrass (Halophila ovalis) with implications for seagrass resilience. Front. Plant Sci. 13, 947109 (2022).
Valentine, J. F. & Heck, K. L. Jr Herbivory in seagrass meadows: an evolving paradigm. Estuar. Coasts 44, 491–505 (2021).
Dixon, O. F. & Gallagher, A. J. Blue carbon ecosystems and shark behaviour: an overview of key relationships, network interactions, climate impacts, and future research needs. Front. Mar. Sci. 10, 1202972 (2023).
Salafsky, N. & Margoluis, R. A. Pathways to Success: Taking Conservation to Scale in Complex Systems (Island Press, 2021).
Rossbach, S. et al. A tide of change: what we can learn from stories of marine conservation success. One Earth 6, 505–518 (2023).
Zunino, S., Canu, D. M., Zupo, V. & Solidoro, C. Direct and indirect impacts of marine acidification on the ecosystem services provided by coralligenous reefs and seagrass systems. Glob. Ecol. Conserv. 18, e00625 (2019).
Capistrant-Fossa, K. A. & Dunton, K. H. Rapid sea level rise causes loss of seagrass meadows. Commun. Earth Environ. 5, 8 (2024).
Rasmusson, L. M. et al. Effects of temperature and hypoxia on respiration, photorespiration, and photosynthesis of seagrass leaves from contrasting temperature regimes. ICES J. Mar. Sci. 77, 2056–2065 (2020).
Yue, S. et al. The super typhoon Lekima (2019) resulted in massive losses in large seagrass (Zostera japonica) meadows, soil organic carbon and nitrogen pools in the intertidal Yellow River Delta, China. Sci. Total. Environ. 793, 148398 (2021).
Marco-Méndez, C. et al. Evaluating the extent and impact of the extreme Storm Gloria on Posidonia oceanica seagrass meadows. Sci. Total. Environ. 908, 168404 (2024).
Holon, F., Boissery, P., Guilbert, A., Freschet, E. & Deter, J. The impact of 85 years of coastal development on shallow seagrass beds (Posidonia oceanica L. (Delile)) in south eastern France: a slow but steady loss without recovery. Estuar. Coast. Shelf Sci. 165, 204–212 (2015).
Mwikamba, E. M., Githaiga, M. N., Huxham, M. & Briers, R. A. Understanding the drivers of seagrass loss in Kenya: evidence for the impacts of population and fishing. Aquat. Conserv. Mar. Freshw. Ecosyst. 34, e4229 (2024).
Hernández-Delgado, E. A. Long-term persistence of propeller and anchor damage to seagrass canopy and demersal biodiversity in puerto rico. Open. J. Ecol. 13, 671–710 (2023).
Sondak, C. F. A. & Kaligis, E. Y. Assessing the seagrasses meadows status and condition: a case study of Wori Seagrass Meadows, North Sulawesi, Indonesia. Biodiversitas J. Biol. Diversity https://doi.org/10.13057/biodiv/d230451 (2022).
Glasby, T. M. & West, G. Dragging the chain: quantifying continued losses of seagrasses from boat moorings. Aquat. Conserv. Mar. Freshw. Ecosyst. 28, 383–394 (2018).
Lewis, M. A. & Devereux, R. Nonnutrient anthropogenic chemicals in seagrass ecosystems: fate and effects. Environ. Toxicol. Chem. 28, 644–661 (2009).
Petus, C. et al. Estimating the exposure of coral reefs and seagrass meadows to land-sourced contaminants in river flood plumes of the Great Barrier Reef: validating a simple satellite risk framework with environmental data. Remote Sens. 8, 210 (2016).
Jephson, T., Nyström, P., Moksnes, P. O. & Baden, S. P. Trophic interactions in Zostera marina beds along the Swedish coast. Mar. Ecol. Prog. Ser. 369, 63–76 (2008).
Moksnes, P. O., Gullström, M., Tryman, K. & Baden, S. Trophic cascades in a temperate seagrass community. Oikos 117, 763–777 (2008).
Burkholder, D. A., Heithaus, M. R., Fourqurean, J. W., Wirsing, A. & Dill, L. M. Patterns of top‐down control in a seagrass ecosystem: could a roving apex predator induce a behaviour‐mediated trophic cascade? J. Anim. Ecol. 82, 1192–1202 (2013).
Peterson, B. J., Rose, C. D., Rutten, L. M. & Fourqurean, J. W. Disturbance and recovery following catastrophic grazing: studies of a successional chronosequence in a seagrass bed. Oikos 97, 361–370 (2002).
Sullivan, B. K., Trevathan-Tackett, S. M., Neuhauser, S. & Govers, L. L. Review: Host–pathogen dynamics of seagrass diseases under future global change. Mar. Pollut. Bull. 134, 75–88 (2018).
Beca-Carretero, P. et al. Climate change and the presence of invasive species will threaten the persistence of the Mediterranean seagrass community. Sci. Total. Environ. 910, 168675 (2024).
Ceccherelli, G., Pinna, S., Cusseddu, V. & Bulleri, F. The role of disturbance in promoting the spread of the invasive seaweed Caulerpa racemosa in seagrass meadows. Biol. Invas. 16, 2737–2745 (2014).
Shields, E. C., Moore, K. A. & Parrish, D. B. Adaptations by Zostera marina dominated seagrass meadows in response to water quality and climate forcing. Diversity 10, 125 (2018).
Akerlof, K. in Participatory Sensing, Opinions and Collective Awareness: Understanding Complex Systems (Loreto, V. et al.) 305–336 (Springer, 2017).
Travaille, K. L., Salinas-de-León, P. & Bell, J. J. Indication of visitor trampling impacts on intertidal seagrass beds in a New Zealand marine reserve. Ocean. Coast. Manag. 114, 145–150 (2015).
Unsworth, R. K. et al. Effectiveness of moorings constructed from rope in reducing impacts to seagrass. Oceans 3, 431–438 (2022).
Milazzo, M., Badalamenti, F., Ceccherelli, G. & Chemello, R. Boat anchoring on Posidonia oceanica beds in a marine protected area (Italy, western Mediterranean): effect of anchor types in different anchoring stages. J. Exp. Mar. Biol. Ecol. 299, 51–62 (2004).
Branco, J. et al. Natural recovery of Zostera noltii seagrass beds and benthic nematode assemblage responses to physical disturbance caused by traditional harvesting activities. J. Exp. Mar. Biol. Ecol. 502, 191–202 (2018).
Kaiser, M. J., Spence, F. E. & Hart, P. J. Fishing‐gear restrictions and conservation of benthic habitat complexity. Conserv. Biol. 14, 1512–1525 (2000).
Project Seagrass. Our Plan to Save the World's Seagrass: Strategic Plan 2022–2023 (Project Seagrass, 2021).
UNEP-WCMC & Short, F. T. Global distribution of seagrasses (version 7.1). Seventh update to the data layer used in Green and Short (2003). Cambridge (UK): UN Environment World Conservation Monitoring Centre https://doi.org/10.34892/x6r3-d211 (2021).
Shilland, R. et al. A question of standards: adapting carbon and other PES markets to work for community seagrass conservation. Mar. Policy 129, 104574 (2021).
VM0033 Methodology for Tidal Wetland and Seagrass Restoration v2.1. Verra https://verra.org/methodologies/vm0033-methodology-for-tidal-wetland-and-seagrass-restoration-v2-1/ (2023).
Comte, A. et al. Operationalizing blue carbon principles in France: methodological developments for Posidonia oceanica seagrass meadows and institutionalization. Mar. Pollut. Bull. 198, 115822 (2024).
Kuwae, T., Watanabe, A., Yoshihara, S., Suehiro, F. & Sugimura, Y. Implementation of blue carbon offset crediting for seagrass meadows, macroalgal beds, and macroalgae farming in Japan. Mar. Policy 138, 104996 (2022).
Duarte, C. M., Middelburg, J. J. & Caraco, N. Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2, 1–8 (2005).
Marbà, N. et al. Impact of seagrass loss and subsequent revegetation on carbon sequestration and stocks. J. Ecol. 103, 296–302 (2015).
The Core Carbon Principles. Integrity Council for the Voluntary Carbon Market https://icvcm.org/core-carbon-principles/ (2025).
Climate, Community and Biodiversity Standards. Verra https://verra.org/programs/ccbs/ (2024).
Plan Vivo’s Biodiversity Standard. Plan Vivo https://www.planvivo.org/news/plan-vivo-launch-biodiversity-standard (2023).
Vousdoukas, M. I. et al. Economic motivation for raising coastal flood defenses in Europe. Nat. Commun. 11, 2119 (2020).
Williams, S. L. Introduced species in seagrass ecosystems: status and concerns. J. Exp. Mar. Biol. Ecol. 350, 89–110 (2007).
Winters, G. et al. The tropical seagrass Halophila stipulacea: reviewing what we know from its native and invasive habitats, alongside identifying knowledge gaps. Front. Mar. Sci. 7, 300 (2020).
Winters, G., Nguyen, H. M. & Kaminer, M. Expansion of Halophila stipulacea in parallel with declines of native seagrasses in the eastern Mediterranean Sea. Aquat. Botany 196, 103829 (2024).
Sghaier, Y. R., Zakhama-Sraieb, R. & Charfi-Cheikhrouha, F. Effects of the invasive seagrass Halophila stipulacea on the native seagrass Cymodocea nodosa. In Proc. 5th Mediterranean Symp. on Marine Vegetation 167–171 (UNEP, 2014).
Wesselmann, M. et al. Seagrass (Halophila stipulacea) invasion enhances carbon sequestration in the Mediterranean Sea. Glob. Change Biol. 27, 2592–2607 (2021).
Apostolaki, E. T. et al. Exotic Halophila stipulacea is an introduced carbon sink for the eastern Mediterranean Sea. Sci. Rep. 9, 9643 (2019).
James, R. K. et al. Seagrass coastal protection services reduced by invasive species expansion and megaherbivore grazing. J. Ecol. 108, 2025–2037 (2020).
Costa, S. V. et al. Impact of invasive seagrass Halophila stipulacea on life history characteristics of juvenile yellowtail snapper (Ocyurus chrysurus). Bull. Mar. Sci. 100, 571–598 (2024).
Mach, M. E., Wyllie-Echeverria, S. & Chan, K. M. Ecological effect of a nonnative seagrass spreading in the northeast Pacific: a review of Zostera japonica. Ocean Coast. Manag. 102, 375–382 (2014).
Malerba, M. E. et al. Remote sensing for cost-effective blue carbon accounting. Earth-Sci. Rev. 238, 104337 (2023).
Kutser, T., Hedley, J., Giardino, C., Roelfsema, C. & Brando, V. E. Remote sensing of shallow waters — a 50 year retrospective and future directions. Remote Sens. Environ. 240, 111619 (2020).
Ekelund, A. et al. High-resolution, precision mapping of seagrass blue carbon habitat using multi-spectral imaging and aerial LiDAR. Estuar. Coast. Shelf Sci. 304, 108832 (2024).
Noman, M. K., Islam, S. M. S., Abu-Khalaf, J., Jalali, S. M. J. & Lavery, P. Improving accuracy and efficiency in seagrass detection using state-of-the-art AI techniques. Ecol. Inform. 76, 102047 (2023).
Chowdhury, M. et al. AI-driven remote sensing enhances Mediterranean seagrass monitoring and conservation to combat climate change and anthropogenic impacts. Sci. Rep. 14, 8360 (2024).
Esteban, N., Unsworth, R. K. F., Gourlay, J. B. Q. & Hays, G. C. The discovery of deep-water seagrass meadows in a pristine Indian Ocean wilderness revealed by tracking green turtles. Mar. Pollut. Bull. 134, 99–105 (2018).
Hays, G. C. et al. New tools to identify the ___location of seagrass meadows: marine grazers as habitat indicators. Front. Mar. Sci. 5, 9 (2018).
Mann, H. et al. Green turtle tracking leads the discovery of seagrass blue carbon resources. Proc. R. Soc. B 291, 20240502 (2024).
Acknowledgements
C.M.D. was supported by King Abdullah University of Science and Technology through baseline funding. O.S. was supported by projects RYC2019-027073-I and PIE HOLOCENO 20213AT014 funded by MCIN/AEI/10.13039/501100011033 and FEDER. E.T.A. was supported from the ARTEMIS project (Interreg Euro-MED 0200867).
Author information
Authors and Affiliations
Contributions
C.M.D. designed and coordinated the article. The authors contributed equally to all other aspects of the article.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Biodiversity thanks Carmen Santos and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
Global Coral R&D Accelerator Platform: www.CORDAP.org
Green Climate Fund: www.greenclimate.fund
Kunming–Montreal Global Biodiversity Framework: www.cbd.int/gbf
Seagrass Breakthrough: https://www.dugongseagrass.org/media/2024/11/Leaflet_2030-Seagrass-Breakthrough_version5.pdf
UNEP World Conservation Monitoring Center’s Global Distribution of Seagrasses: https://data.unep-wcmc.org/datasets/7
UNEP World Conservation Monitoring Center’s Restoration Funding Data Set: https://restorationfunders.com
Supplementary information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Duarte, C.M., Apostolaki, E.T., Serrano, O. et al. Conserving seagrass ecosystems to meet global biodiversity and climate goals. Nat. Rev. Biodivers. 1, 150–165 (2025). https://doi.org/10.1038/s44358-025-00028-x
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s44358-025-00028-x