Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Tailoring interaction network types to answer different ecological questions

Abstract

Ecological interaction networks are an important tool for describing species interactions, but many network approaches are available, each with their strengths and weaknesses. In this Perspective, we describe how interaction networks can be differentiated in two main ways: by the extent of node aggregation (how species are lumped into groups) and by the type of information contained in links (potential versus realized interactions). We discuss the ecological questions that each network type can address, how measurements from different types of network should be interpreted, and their relative advantages. Networks with nodes aggregated to functional groups are suitable when focusing on ecosystem-level processes and ecosystem functions. Species-level networks provide information about the assembly of ecological communities or about how abiotic and biotic drivers influence species persistence. Networks with potential links are particularly useful for understanding ecological redundancy or for long-term or large-scale studies, where all potential interactions are likely to be realized. Networks of realized interactions provide access to finer mechanisms of the interplay between abiotic and biotic factors in determining ecological interactions. Identifying the advantages and limitations of different interaction networks will aid methodological decision making and increase the utility and applicability of ecological networks in biodiversity and conservation research programmes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Flowchart representing the methodological choices underlying the decision to use a specific network type.

Similar content being viewed by others

References

  1. Eschenbrenner, J. & Thébault, É. Diversity, food web structure and the temporal stability of total plant and animal biomasses. Oikos 2023, e08769 (2023).

    Article  Google Scholar 

  2. Barnes, A. D. et al. Energy flux: the link between multitrophic biodiversity and ecosystem functioning. Trends Ecol. Evol. 33, 186–197 (2018).

    Article  Google Scholar 

  3. Antunes, A. C. et al. Linking biodiversity and nature’s contributions to people (NCP): a macroecological energy flux perspective. Trends Ecol. Evol. 39, 427–434 (2024).

    Article  Google Scholar 

  4. Giling, D. P. et al. A niche for ecosystem multifunctionality in global change research. Glob. Change Biol. 25, 763–774 (2019).

    Article  Google Scholar 

  5. Martinez, N. D. Artifacts or attributes? Effects of resolution on the Little Rock Lake food web. Ecol. Monogr. 61, 367–392 (1991).

    Article  Google Scholar 

  6. Renaud, E., Baudry, E. & Bessa-Gomes, C. Influence of taxonomic resolution on mutualistic network properties. Ecol. Evol. 10, 3248–3259 (2020).

    Article  Google Scholar 

  7. Hines, J. et al. A meta food web for invertebrate species collected in a European grassland. Ecology 100, e02679 (2019).

    Article  Google Scholar 

  8. Li, J. et al. A size-constrained feeding-niche model distinguishes predation patterns between aquatic and terrestrial food webs. Ecol. Lett. 26, 76–86 (2023).

    Article  Google Scholar 

  9. McDonald-Madden, E. et al. Using food-web theory to conserve ecosystems. Nat. Commun. 7, 10245 (2016).

    Article  CAS  Google Scholar 

  10. Valdovinos, F. S. et al. Species traits and network structure predict the success and impacts of pollinator invasions. Nat. Commun. 9, 2153 (2018).

    Article  Google Scholar 

  11. Loeuille, N. & Loreau, M. Evolutionary emergence of size-structured food webs. Proc. Natl Acad. Sci. USA 102, 5761–5766 (2005).

    Article  CAS  Google Scholar 

  12. Gauzens, B., Legendre, S., Lazzaro, X. & Lacroix, G. Food-web aggregation, methodological and functional issues. Oikos 122, 1606–1615 (2013).

    Article  Google Scholar 

  13. Dunne, J. A. in Ecological Networks: Linking Structure to Dynamics in Food Webs (eds Pascual, M. & Dunne, J. A.) (Oxford Academic, 2005).

  14. Paine, R. T. Road maps of interactions or grist for theoretical development? Ecology 69, 1648–1654 (1988).

    Article  Google Scholar 

  15. Hulot, F. D., Lacroix, G., Lescher-Moutoué, F. & Loreau, M. Functional diversity governs ecosystem response to nutrient enrichment. Nature 405, 340–344 (2000).

    Article  CAS  Google Scholar 

  16. Boit, A., Martinez, N. D., Williams, R. J. & Gaedke, U. Mechanistic theory and modelling of complex food-web dynamics in Lake Constance: mechanistic modelling of complex food web dynamics. Ecol. Lett. 15, 594–602 (2012).

    Article  Google Scholar 

  17. Ersoy, Z. et al. Size-based interactions and trophic transfer efficiency are modified by fish predation and cyanobacteria blooms in Lake Mývatn, Iceland. Freshw. Biol. 62, 1942–1952 (2017).

    Article  CAS  Google Scholar 

  18. Gauzens, B., Legendre, S., Lazzaro, X. & Lacroix, G. Intermediate predation pressure leads to maximal complexity in food webs. Oikos 125, 595–603 (2016).

    Article  Google Scholar 

  19. Allesina, S. & Pascual, M. Food web models: a plea for groups. Ecol. Lett. 12, 652–662 (2009).

    Article  Google Scholar 

  20. Gauzens, B., Thébault, E., Lacroix, G. & Legendre, S. Trophic groups and modules: two levels of group detection in food webs. J. R. Soc. Interf. 12, 20141176 (2015).

    Article  Google Scholar 

  21. Galiana, N. et al. Can biomass distribution across trophic levels predict trophic cascades? Ecol. Lett. 24, 464–476 (2021).

    Article  Google Scholar 

  22. Lane, P. A. A review of the trophic cascade concept using the lens of loop analysis: “the truth is the whole”. Food Webs 13, 1–11 (2017).

    Article  Google Scholar 

  23. Barnes, A. D. et al. Biodiversity enhances the multitrophic control of arthropod herbivory. Sci. Adv. 6, eabb6603 (2020).

    Article  Google Scholar 

  24. Geslin, B., Gauzens, B., Thébault, E. & Dajoz, I. Plant pollinator networks along a gradient of urbanisation. PLoS ONE 8, e63421 (2013).

    Article  Google Scholar 

  25. Schwarz, B. et al. Warming alters energetic structure and function but not resilience of soil food webs. Nat. Clim. Change 7, 895–900 (2017).

    Article  Google Scholar 

  26. Ropars, L., Affre, L., Thébault, É. & Geslin, B. Seasonal dynamics of competition between honey bees and wild bees in a protected Mediterranean scrubland. Oikos 2022, e08915 (2022).

    Article  Google Scholar 

  27. Potapov, A. M. et al. Rainforest transformation reallocates energy from green to brown food webs. Nature 627, 116–122 (2024).

    Article  CAS  Google Scholar 

  28. Bauer, B. et al. Biotic filtering by species’ interactions constrains food-web variability across spatial and abiotic gradients. Ecol. Lett. 25, 1225–1236 (2022).

    Article  Google Scholar 

  29. Allhoff, K. T., Ritterskamp, D., Rall, B. C., Drossel, B. & Guill, C. Evolutionary food web model based on body masses gives realistic networks with permanent species turnover. Sci. Rep. 5, 10955 (2015).

    Article  CAS  Google Scholar 

  30. Lomáscolo, S. B., Giannini, N., Chacoff, N. P., Castro-Urgal, R. & Vázquez, D. P. Inferring coevolution in a plant–pollinator network. Oikos 128, 775–789 (2019).

    Article  Google Scholar 

  31. Gauzens, B., Rall, B. C., Mendonça, V., Vinagre, C. & Brose, U. Biodiversity of intertidal food webs in response to warming across latitudes. Nat. Clim. Change 10, 264–269 (2020).

    Article  Google Scholar 

  32. Kratina, P., LeCraw, R. M., Ingram, T. & Anholt, B. R. Stability and persistence of food webs with omnivory: is there a general pattern? Ecosphere 3, art50 (2012).

    Article  Google Scholar 

  33. Arroyo-Correa, B., Bartomeus, I. & Jordano, P. Individual-based plant–pollinator networks are structured by phenotypic and microsite plant traits. J. Ecol. 109, 2832–2844 (2021).

    Article  Google Scholar 

  34. Woodward, G. et al. Individual-based food webs. Adv. Ecol. Res. 43, 211–266 (2010).

    Article  Google Scholar 

  35. Blanchard, J. L., Heneghan, R. F., Everett, J. D., Trebilco, R. & Richardson, A. J. From bacteria to whales: using functional size spectra to model marine ecosystems. Trends Ecol. Evol. 32, 174–186 (2017).

    Article  Google Scholar 

  36. Gauzens, B. et al. Flexible foraging behaviour increases predator vulnerability to climate change. Nat. Clim. Change 14, 387–392 (2024).

    Article  Google Scholar 

  37. Toscano, B. J. & Griffen, B. D. Trait-mediated functional responses: predator behavioural type mediates prey consumption. J. Anim. Ecol. 83, 1469–1477 (2014).

    Article  Google Scholar 

  38. Sporta Caputi, S. et al. Individual diet variability shapes the architecture of Antarctic benthic food webs. Sci. Rep. 14, 12333 (2024).

    Article  CAS  Google Scholar 

  39. Cantwell-Jones, A., Tylianakis, J. M., Larson, K. & Gill, R. J. Using individual-based trait frequency distributions to forecast plant-pollinator network responses to environmental change. Ecol. Lett. 27, e14368 (2024).

    Article  Google Scholar 

  40. Gårdmark, A. & Huss, M. Individual variation and interactions explain food web responses to global warming. Phil. Trans. R. Soc. B 375, 20190449 (2020).

    Article  Google Scholar 

  41. Delmas, E. et al. Analysing ecological networks of species interactions. Biol. Rev. 94, 16–36 (2019).

    Article  Google Scholar 

  42. Dickman, E. M., Newell, J. M., González, M. J. & Vanni, M. J. Light, nutrients, and food-chain length constrain planktonic energy transfer efficiency across multiple trophic levels. Proc. Natl. Acad. Sci. USA 105, 18408–18412 (2008).

    Article  CAS  Google Scholar 

  43. Thébault, E. & Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329, 853–856 (2010).

    Article  Google Scholar 

  44. Borzone Mas, D., Scarabotti, P. A., Alvarenga, P., Vaschetto, P. A. & Arim, M. Food web structure mediates positive and negative effects of diversity on ecosystem functioning in a large floodplain river. Am. Nat. https://doi.org/10.1086/735914 (2025).

    Article  Google Scholar 

  45. Wang, S. & Brose, U. Biodiversity and ecosystem functioning in food webs: the vertical diversity hypothesis. Ecol. Lett. 21, 9–20 (2018).

    Article  CAS  Google Scholar 

  46. Neutel, A.-M. et al. Reconciling complexity with stability in naturally assembling food webs. Nature 449, 599–602 (2007).

    Article  CAS  Google Scholar 

  47. Gibert, J. P. Temperature directly and indirectly influences food web structure. Sci. Rep. 9, 5312 (2019).

    Article  Google Scholar 

  48. Benadi, G., Hovestadt, T., Poethke, H.-J. & Blüthgen, N. Specialization and phenological synchrony of plant–pollinator interactions along an altitudinal gradient. J. Anim. Ecol. 83, 639–650 (2014).

    Article  Google Scholar 

  49. Kortsch, S. et al. Food-web structure varies along environmental gradients in a high-latitude marine ecosystem. Ecography 42, 295–308 (2019).

    Article  Google Scholar 

  50. Lazzaro, X., Lacroix, G., Gauzens, B., Gignoux, J. & Legendre, S. Predator foraging behaviour drives food-web topological structure. J. Anim. Ecol. 78, 1307–1317 (2009).

    Article  Google Scholar 

  51. O’Gorman, E. J., Fitch, J. E. & Crowe, T. P. Multiple anthropogenic stressors and the structural properties of food webs. Ecology 93, 441–448 (2012).

    Article  Google Scholar 

  52. Tylianakis, J. M. & Morris, R. J. Ecological networks across environmental gradients. Annu. Rev. Ecol. Evol. Syst. 48, 25–48 (2017).

    Article  Google Scholar 

  53. Dormann, C. F. in Defining Agroecology — A Festschrift for Teja Tscharntke (eds Dormann, C. F. et al.) 143–159 (Tredition, 2023).

  54. Blüthgen, N. Why network analysis is often disconnected from community ecology: a critique and an ecologist’s guide. Basic Appl. Ecol. 11, 185–195 (2010).

    Article  Google Scholar 

  55. Timóteo, S. et al. Tripartite networks show that keystone species can multitask. Funct. Ecol. 37, 274–286 (2023).

    Article  Google Scholar 

  56. Bianco, G., Manning, P. & Schleuning, M. A quantitative framework for identifying the role of individual species in nature’s contributions to people. Ecol. Lett. 27, e14371 (2024).

    Article  Google Scholar 

  57. Allesina, S. & Pascual, M. Googling food webs: can an eigenvector measure species’ importance for coextinctions? PLoS Comput. Biol. 5, e1000494 (2009).

    Article  Google Scholar 

  58. Memmott, J., Waser, N. M. & Price, M. V. Tolerance of pollination networks to species extinctions. Proc. R. Soc. Lond. B 271, 2605–2611 (2004).

    Article  Google Scholar 

  59. Alger, S. A., Burnham, P. A., Boncristiani, H. F. & Brody, A. K. RNA virus spillover from managed honeybees (Apis mellifera) to wild bumblebees (Bombus spp.). PLoS ONE 14, e0217822 (2019).

    Article  CAS  Google Scholar 

  60. Musseau, C. et al. Within-individual trophic variability drives short-term intraspecific trait variation in natural populations. J. Anim. Ecol. 89, 921–932 (2020).

    Article  Google Scholar 

  61. Emer, C. & Memmott, J. Intraspecific variation of invaded pollination networks — the role of pollen-transport, pollen-transfer and different levels of biological organization. Persp. Ecol. Conserv. 21, 151–163 (2023).

    Google Scholar 

  62. Pires, M. M. et al. The indirect paths to cascading effects of extinctions in mutualistic networks. Ecology 101, e03080 (2020).

    Article  Google Scholar 

  63. Stouffer, D. B. & Bascompte, J. Compartmentalization increases food-web persistence. Proc. Natl Acad. Sci. USA 108, 3648–3652 (2011).

    Article  CAS  Google Scholar 

  64. Romanuk, T. N. et al. Predicting invasion success in complex ecological networks. Phil. Trans. R. Soc. B 364, 1743–1754 (2009).

    Article  Google Scholar 

  65. Lurgi, M., Galiana, N., López, B. C., Joppa, L. N. & Montoya, J. M. Network complexity and species traits mediate the effects of biological invasions on dynamic food webs. Front. Ecol. Evol. 2, 36 (2014).

    Article  Google Scholar 

  66. Trøjelsgaard, K., Heleno, R. & Traveset, A. Native and alien flower visitors differ in partner fidelity and network integration. Ecol. Lett. 22, 1264–1273 (2019).

    Article  Google Scholar 

  67. Thompson, R. M. & Townsend, C. R. Is resolution the solution? The effect of taxonomic resolution on the calculated properties of three stream food webs. Freshw. Biol. 44, 413–422 (2000).

    Article  Google Scholar 

  68. Patonai, K. & Jordán, F. Aggregation of incomplete food web data may help to suggest sampling strategies. Ecol. Model. 352, 77–89 (2017).

    Article  Google Scholar 

  69. Llopis-Belenguer, C. et al. Sensitivity of bipartite network analyses to incomplete sampling and taxonomic uncertainty. Ecology 104, e3974 (2023).

    Article  Google Scholar 

  70. Martinez, N. D. Effects of resolution on food web structure. Oikos 66, 403 (1993).

    Article  Google Scholar 

  71. Guimarães, P. R. The structure of ecological networks across levels of organization. Annu. Rev. Ecol. Evol. Syst. 51, 433–460 (2020).

    Article  Google Scholar 

  72. Valdovinos, F. S., Bodini, A. & Jordán, F. Connected interactions: enriching food web research by spatial and social interactions. Phil. Trans. R. Soc. B 379, 20230163 (2024).

    Article  Google Scholar 

  73. Fontaine, C., Collin, C. L. & Dajoz, I. Generalist foraging of pollinators: diet expansion at high density. J. Ecol. 96, 1002–1010 (2008).

    Article  Google Scholar 

  74. Brose, U. et al. Embedding information flows within ecological networks. Nat. Ecol. Evol. 9, 547–558 (2025).

    Article  Google Scholar 

  75. Raimundo, R. L. G., Guimarães, P. R. & Evans, D. M. Adaptive networks for restoration ecology. Trends Ecol. Evol. 33, 664–675 (2018).

    Article  Google Scholar 

  76. Andelman, S. J. & Fagan, W. F. Umbrellas and flagships: efficient conservation surrogates or expensive mistakes? Proc. Natl Acad. Sci. 97, 5954–5959 (2000).

    Article  CAS  Google Scholar 

  77. Cuff, J. P. et al. Prey nutrient content is associated with the trophic interactions of spiders and their prey selection under field conditions. Oikos 2025, e10712 (2025).

    Article  CAS  Google Scholar 

  78. Pomeranz, J. P. F., Thompson, R. M., Poisot, T. & Harding, J. S. Inferring predator–prey interactions in food webs. Methods Ecol. Evol. 10, 356–367 (2019).

    Article  Google Scholar 

  79. Saito, V. S. et al. Untangling the complex food webs of tropical rainforest streams. J. Anim. Ecol. 93, 1022–1035 (2024).

    Article  Google Scholar 

  80. Hernvann, P.-Y., Gascuel, D., Kopp, D., Robert, M. & Rivot, E. A hierarchical Bayesian model to combine stomach, biotracer, and literature data into diet matrix estimation. Ecol. Appl. 32, e2521 (2022).

    Article  Google Scholar 

  81. Williams, R. J., Anandanadesan, A. & Purves, D. The probabilistic niche model reveals the niche structure and role of body size in a complex food web. PLoS ONE 5, e12092 (2010).

    Article  Google Scholar 

  82. Brose, U. et al. Predator traits determine food-web architecture across ecosystems. Nat. Ecol. Evol. 3, 919–927 (2019).

    Article  Google Scholar 

  83. Pires, M. M., Benchimol, M., Cruz, L. R. & Peres, C. A. Terrestrial food web complexity in Amazonian forests decays with habitat loss. Curr. Biol. 33, 389–396.e3 (2023).

    Article  CAS  Google Scholar 

  84. Pawar, S., Dell, A. I. & Savage, VanM. Dimensionality of consumer search space drives trophic interaction strengths. Nature 486, 485–489 (2012).

    Article  CAS  Google Scholar 

  85. Eklöf, A. et al. The dimensionality of ecological networks. Ecol. Lett. 16, 577–583 (2013).

    Article  Google Scholar 

  86. Strydom, T. et al. A roadmap towards predicting species interaction networks (across space and time). Phil. Trans. R. Soc. B 376, 20210063 (2021).

    Article  Google Scholar 

  87. Cherif, M. et al. The environment to the rescue: can physics help predict predator–prey interactions? Biol. Rev. 99, 1927–1947 (2024).

    Article  Google Scholar 

  88. Portalier, S. M. J., Fussmann, G. F., Loreau, M. & Cherif, M. The mechanics of predator–prey interactions: first principles of physics predict predator–prey size ratios. Funct. Ecol. 33, 323–334 (2019).

    Article  Google Scholar 

  89. Klecka, J. & Boukal, D. S. Foraging and vulnerability traits modify predator–prey body mass allometry: freshwater macroinvertebrates as a case study. J. Anim. Ecol. 82, 1031–1041 (2013).

    Article  Google Scholar 

  90. Garibaldi, L. A. et al. Trait matching of flower visitors and crops predicts fruit set better than trait diversity. J. Appl. Ecol. 52, 1436–1444 (2015).

    Article  Google Scholar 

  91. Pires, M. M. et al. Pleistocene megafaunal interaction networks became more vulnerable after human arrival. Proc. R. Soc. B 282, 20151367 (2015).

    Article  Google Scholar 

  92. Williams, R. J. & Martinez, N. D. Simple rules yield complex food webs. Nature 404, 180–183 (2000).

    Article  CAS  Google Scholar 

  93. Schneider, F. D., Brose, U., Rall, B. C. & Guill, C. Animal diversity and ecosystem functioning in dynamic food webs. Nat. Commun. 7, 12718 (2016).

    Article  CAS  Google Scholar 

  94. Binzer, A., Guill, C., Rall, B. C. & Brose, U. Interactive effects of warming, eutrophication and size structure: impacts on biodiversity and food-web structure. Glob. Change Biol. 22, 220–227 (2016).

    Article  Google Scholar 

  95. Gravel, D., Poisot, T., Albouy, C., Velez, L. & Mouillot, D. Inferring food web structure from predator–prey body size relationships. Methods Ecol. Evol. 4, 1083–1090 (2013).

    Article  Google Scholar 

  96. Pichler, M., Boreux, V., Klein, A.-M., Schleuning, M. & Hartig, F. Machine learning algorithms to infer trait-matching and predict species interactions in ecological networks. Meth. Ecol. Evol. 11, 281–293 (2020).

    Article  Google Scholar 

  97. Rodrigues, F. A., Peron, T., Connaughton, C., Kurths, J. & Moreno, Y. A machine learning approach to predicting dynamical observables from network structure. Proc. R. Soc. A 481, 20240435 (2025).

    Article  Google Scholar 

  98. Biton, B., Puzis, R. & Pilosof, S. Inductive link prediction boosts data availability and enables cross-community link prediction in ecological networks. Preprint at EcoEvoRxiv https://doi.org/10.32942/X2JS75 (2024).

  99. Ho, H.-C., Tylianakis, J. M., Zheng, J. X. & Pawar, S. Predation risk influences food-web structure by constraining species diet choice. Ecol. Lett. 22, 1734–1745 (2019).

    Article  Google Scholar 

  100. Lesser, J. S., James, W. R., Stallings, C. D., Wilson, R. M. & Nelson, J. A. Trophic niche size and overlap decreases with increasing ecosystem productivity. Oikos 129, 1303–1313 (2020).

    Article  Google Scholar 

  101. Sentis, A., Hemptinne, J.-L. & Brodeur, J. Towards a mechanistic understanding of temperature and enrichment effects on species interaction strength, omnivory and food-web structure. Ecol. Lett. 17, 785–793 (2014).

    Article  Google Scholar 

  102. Leimberger, K. G., Hadley, A. S. & Betts, M. G. Plant–hummingbird pollination networks exhibit limited rewiring after experimental removal of a locally abundant plant species. J. Anim. Ecol. 92, 1680–1694 (2023).

    Article  Google Scholar 

  103. Neves, M. P., Delariva, R. L., Perkins, D. M., Fialho, C. B. & Kratina, P. Trophic plasticity of omnivorous fishes in natural and human-dominated landscapes. Limnol. Oceanog. 69, 189–202 (2024).

    Article  CAS  Google Scholar 

  104. Su, M., Ma, Q. & Hui, C. Adaptive rewiring shapes structure and stability in a three-guild herbivore–plant–pollinator network. Commun. Biol. 7, 103 (2024).

    Article  Google Scholar 

  105. Kondoh, M. Foraging adaptation and the relationship between food-web complexity and stability. Science 299, 1388–1391 (2003).

    Article  CAS  Google Scholar 

  106. Heckmann, L., Drossel, B., Brose, U. & Guill, C. Interactive effects of body-size structure and adaptive foraging on food-web stability: body size, adaptivity and food-web stability. Ecol. Lett. 15, 243–250 (2012).

    Article  Google Scholar 

  107. Gilljam, D., Curtsdotter, A. & Ebenman, B. Adaptive rewiring aggravates the effects of species loss in ecosystems. Nat. Commun. 6, 8412 (2015).

    Article  CAS  Google Scholar 

  108. Ho, H.-C., Pawar, S. & Tylianakis, J. M. Less is worse than none: ineffective adaptive foraging can destabilise food webs. Preprint at bioRxiv https://doi.org/10.1101/2021.11.28.470273 (2021).

  109. CaraDonna, P. J. et al. Interaction rewiring and the rapid turnover of plant–pollinator networks. Ecol. Lett. 20, 385–394 (2017).

    Article  Google Scholar 

  110. Lázaro, A. & Gómez-Martínez, C. Habitat loss increases seasonal interaction rewiring in plant–pollinator networks. Funct. Ecol. 36, 2673–2684 (2022).

    Article  Google Scholar 

  111. Bartley, T. J. et al. Food web rewiring in a changing world. Nat. Ecol. Evol. 3, 345–354 (2019).

    Article  Google Scholar 

  112. Pires, M. M. Rewilding ecological communities and rewiring ecological networks. Persp. Ecol. Conserv. 15, 257–265 (2017).

    Google Scholar 

  113. Peralta, G. et al. Predicting plant–pollinator interactions: concepts, methods, and challenges. Trends Ecol. Evol. 39, 494–505 (2024).

    Article  Google Scholar 

  114. Petchey, O. L., Brose, U. & Rall, B. C. Predicting the effects of temperature on food web connectance. Phil. Trans. R. Soc. B 365, 2081–2091 (2010).

    Article  Google Scholar 

  115. Petchey, O. L., Beckerman, A. P., Riede, J. O. & Warren, P. H. Size, foraging, and food web structure. Proc. Natl Acad. Sci. USA 105, 4191–4196 (2008).

    Article  CAS  Google Scholar 

  116. Pringle, R. M. & Hutchinson, M. C. Resolving food-web structure. Annu. Rev. Ecol. Evol. Syst. 51, 55–80 (2020).

    Article  Google Scholar 

  117. Brimacombe, C. et al. Publication-driven consistency in food web structures: implications for comparative ecology. Ecology 106, e4467 (2025).

    Article  Google Scholar 

  118. Kleunen, L. V., Dee, L. E., Wootton, K. L., Massol, F. & Clauset, A. Predicting missing links in food webs using stacked models and species traits. Preprint at bioRxiv https://doi.org/10.1101/2024.11.22.624890 (2024).

  119. Gray, C. et al. Joining the dots: an automated method for constructing food webs from compendia of published interactions. Food Webs 5, 11–20 (2015).

    Article  Google Scholar 

  120. Van De Walle, R. et al. Arthropod food webs predicted from body size ratios are improved by incorporating prey defensive properties. J. Anim. Ecol. 92, 913–924 (2023).

    Article  Google Scholar 

  121. Maiorano, L. et al. TETRA‐EU 1.0: a species‐level trophic metaweb of European tetrapods. Glob. Ecol. Biogeog. 29, 1452–1457 (2020).

    Article  Google Scholar 

  122. Atakan, E. & Pehlívan, S. Attractiveness of various colored sticky traps to some pollinating insects in apple. Turk. J. Zool. 39, 474–481 (2015).

    Article  Google Scholar 

  123. Simard, S. W., Beiler, K. J., Bingham, M. A., Deslippe, J. R., Philip, L. J., & Teste, F. P. Mycorrhizal networks: mechanisms, ecology and modelling. Fungal Biol. Rev. 26, 39–60 (2012).

    Article  Google Scholar 

  124. Reid, R. E. B., Crowley, B. E. & Haupt, R. J. The prospects of poop: a review of past achievements and future possibilities in faecal isotope analysis. Biol. Rev. 98, 2091–2113 (2023).

    Article  CAS  Google Scholar 

  125. Layman, C. A. et al. Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biol. Rev. 87, 545–562 (2012).

    Article  Google Scholar 

  126. O’Gorman, E. J. et al. Unexpected changes in community size structure in a natural warming experiment. Nat. Clim. Change 7, 659–663 (2017).

    Article  Google Scholar 

  127. Novotny, A. et al. DNA metabarcoding highlights cyanobacteria as the main source of primary production in a pelagic food web model. Sci. Adv. 9, eadg1096 (2023).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are supported by the German Centre for Integrative Biodiversity Research (iDiv) and its synthesis centre (sDiv) Halle-Jena-Leipzig, funded by the German Research Foundation grant FZT 118.

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in the conceptualization of this study. B.G. wrote the first draft of the manuscript (with substantial contributions from J.H.). L.T. drew the figure. All authors contributed to the review and editing process.

Corresponding author

Correspondence to Benoit Gauzens.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Biodiversity thanks Fredric Windsor and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gauzens, B., Thouvenot, L., Srivastava, D.S. et al. Tailoring interaction network types to answer different ecological questions. Nat. Rev. Biodivers. (2025). https://doi.org/10.1038/s44358-025-00056-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44358-025-00056-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing