Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 699 results
Advanced filters: Author: Andrew I. Su Clear advanced filters
  • A large nuclear spin has been successfully placed in a Schrödinger cat state, a superposition of its two most widely separated spin coherent states. This can be used as an error-correctable qubit.

    • Xi Yu
    • Benjamin Wilhelm
    • Andrea Morello
    Research
    Nature Physics
    Volume: 21, P: 362-367
  • Sepsis may promptly develop into lethal organ failure, so early diagnosis and treatment planning are essential. Here the authors use machine learning to develop a six-gene signature, termed Sepset, for initial diagnosis, and integrate Sepset into a microfluidic-based bench-side platform for predicting the prognosis of suspected sepsis suitable for the clinic.

    • Lidija Malic
    • Peter G. Y. Zhang
    • Claudia C. dos Santos
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-13
  • Recent work explored the connection between quantum thermalization in closed many-body systems and classical chaos by projecting quantum dynamics onto classical dynamics. Here the authors further this understanding by analytically linking entanglement growth to the Lyapunov spectrum.

    • Sebastian Leontica
    • Andrew G. Green
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-8
  • CMOS-based circuits can be integrated with silicon-based spin qubits and can be controlled at milli-kelvin temperatures, which can potentially help scale up these systems.

    • Samuel K. Bartee
    • Will Gilbert
    • David J. Reilly
    ResearchOpen Access
    Nature
    P: 1-6
  • It is challenging to treat emerging organic contaminants such as pharmaceutical compounds. Using the proposed plant-based zirconium–ellagate framework, this study demonstrates high removal efficiencies of emerging organic contaminants from real untampered municipal wastewater treatment plant effluent.

    • Erik Svensson Grape
    • Antonio J. Chacón-García
    • A. Ken Inge
    ResearchOpen Access
    Nature Water
    Volume: 1, P: 433-442
  • Major histocompatibility complex (MHC) loss of heterozygosity, allele-specific mutation and measurement of expression and repression (MHC Hammer) detects disruption to human leukocyte antigens due to mutations, loss of heterogeneity, altered gene expression or alternative splicing. Applied to lung and breast cancer datasets, the tool shows that these aberrations are common across cancer and can have clinical implications.

    • Clare Puttick
    • Thomas P. Jones
    • Nicholas McGranahan
    ResearchOpen Access
    Nature Genetics
    Volume: 56, P: 2121-2131
  • Anisotropic spin S >1/2 quantum magnets can have multiple low energy modes. In this manuscript, the authors study the interaction of such low energy modes in the S = 1 antiferromagnet Ba2FeSi2O7 by combining neutron scattering measurements with an SU(3) generalization of the 1/S expansion.

    • Seung-Hwan Do
    • Hao Zhang
    • Andrew D. Christianson
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-12
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • The genomic features of precursor conditions of multiple myeloma provide multiple biological insights into disease origins and evolution, together with opportunities to identify those at highest risk of progression.

    • Jean-Baptiste Alberge
    • Ankit K. Dutta
    • Irene M. Ghobrial
    ResearchOpen Access
    Nature Genetics
    Volume: 57, P: 1493-1503
  • Analyses of multiregional tumour samples from 421 patients with non-small cell lung cancer prospectively enrolled to the TRACERx study reveal determinants of tumour evolution and relationships between intratumour heterogeneity and clinical outcome.

    • Alexander M. Frankell
    • Michelle Dietzen
    • Charles Swanton
    ResearchOpen Access
    Nature
    Volume: 616, P: 525-533
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Smoking-associated DNA methylation changes in whole blood have been reported by many EWAS. Here, the authors use a cell-type deconvolution algorithm to identify cell-type specific DNA methylation signals in seven EWAS, identifying lineage-specific smoking-associated DNA methylation changes.

    • Chenglong You
    • Sijie Wu
    • Andrew E. Teschendorff
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • A global network of researchers was formed to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity; this paper reports 13 genome-wide significant loci and potentially actionable mechanisms in response to infection.

    • Mari E. K. Niemi
    • Juha Karjalainen
    • Chloe Donohue
    ResearchOpen Access
    Nature
    Volume: 600, P: 472-477
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Some cancer patients first present with metastases where the ___location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Determining whether somatosensory neurons are involved in internal or external sensing remains a challenge. Here, the authors show that analyzing connectivity is a powerful approach to identify putative neural functions of somatosensory neurons in the fly.

    • Su-Yee J. Lee
    • Chris J. Dallmann
    • Sweta Agrawal
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-16
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Combinatorial experimental and bioinformatics methods can be used to analyse function and specificity of CD8 T cells. Here the authors propose a multiomic analysis framework Antigen-TCR Pairing and Multiomic Analysis of T cell (APMAT) to relate TCR specificity to transcriptomic phenotype indicating associations with physicochemical features.

    • Jingyi Xie
    • Daniel G. Chen
    • James R. Heath
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-15
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • Naylor et al. systematically review the efficacy of treatments for beta-cell monogenic diabetes. Limited evidence from the mostly non-randomized, small studies supports no treatment in glucokinase-related hyperglycemia and sulfonylureas for HNF1A-diabetes; further evidence is needed on the optimum treatments in these and other monogenic subtypes.

    • Rochelle N. Naylor
    • Kashyap A. Patel
    • Tiinamaija Tuomi
    ResearchOpen Access
    Communications Medicine
    Volume: 4, P: 1-17
  • Silicon-based spin qubits are promising candidates for a scalable quantum computer. Here the authors demonstrate the violation of Bell’s inequality in gate-defined quantum dots in silicon, marking a significant advancement that showcases the maturity of this platform.

    • Paul Steinacker
    • Tuomo Tanttu
    • Arne Laucht
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-9
  • Metasurface alignment marks enable precise 3D measurement of relative positions of distant objects using only a laser and a camera, achieving sub-nanometer precision. Applications include 3D chips manufacturing and displacement sensors.

    • Maryam Ghahremani
    • Andrew McClung
    • Amir Arbabi
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-8
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101