Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–12 of 12 results
Advanced filters: Author: Heinz Graafsma Clear advanced filters
  • Lipidic sponge phase crystallization yields membrane protein microcrystals that can be injected into an X-ray free electron laser beam, yielding diffraction patterns that can be processed to recover the crystal structure.

    • Linda C Johansson
    • David Arnlund
    • Richard Neutze
    Research
    Nature Methods
    Volume: 9, P: 263-265
  • Researchers describe a mechanism capable of compressing fast and intense X-ray pulses through the rapid loss of crystalline periodicity. It is hoped that this concept, combined with X-ray free-electron laser technology, will allow scientists to obtain structural information at atomic resolutions.

    • Anton Barty
    • Carl Caleman
    • Henry N. Chapman
    Research
    Nature Photonics
    Volume: 6, P: 35-40
  • Experiments using high-intensity X-ray pulses incident on high-pressure hydrocarbons suggest that diamond formation can occur at shallower depths in icy planets and may play a role in the internal convection that generates their magnetic fields.

    • Mungo Frost
    • R. Stewart McWilliams
    • Alexander F. Goncharov
    Research
    Nature Astronomy
    Volume: 8, P: 174-181
  • Due to the pulsed nature of X-ray free electron laser (XFEL) instruments the majority of protein crystals, which are injected using continuous jet injection techniques are wasted. Here, the authors present a microfluidic device to deliver aqueous protein crystal laden droplets segmented with an immiscible oil and demonstrate that with this device an approx. 60% reduction in sample waste was achieved for data collection of 3-deoxy-D-manno-octulosonate 8-phosphate synthase crystals at the EuXFEL.

    • Austin Echelmeier
    • Jorvani Cruz Villarreal
    • Alexandra Ros
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • The start-up of the new femtosecond hard X-ray laser facility in Stanford, the Linac Coherent Light Source, has brought high expectations for a new era for biological imaging. The intense, ultrashort X-ray pulses allow diffraction imaging of small structures before radiation damage occurs. This new capability is tested for the problem of structure determination from nanocrystals of macromolecules that cannot be grown in large crystals. Over three million diffraction patterns were collected from a stream of nanocrystals of the membrane protein complex photosystem I, which allowed the assembly of a three-dimensional data set for this protein, and proves the concept of this imaging technique.

    • Henry N. Chapman
    • Petra Fromme
    • John C. H. Spence
    Research
    Nature
    Volume: 470, P: 73-77
  • The start-up of the new femtosecond hard X-ray laser facility in Stanford, the Linac Coherent Light Source, has brought high expectations for a new era for biological imaging. The intense, ultrashort X-ray pulses allow diffraction imaging of small structures before radiation damage occurs. This new capability is tested for the problem of imaging a non-crystalline biological sample. Images of mimivirus are obtained, the largest known virus with a total diameter of about 0.75 micrometres, by injecting a beam of cooled mimivirus particles into the X-ray beam. The measurements indicate no damage during imaging and prove the concept of this imaging technique.

    • M. Marvin Seibert
    • Tomas Ekeberg
    • Janos Hajdu
    Research
    Nature
    Volume: 470, P: 78-81
  • Researchers create high ionization states, up to Xe36+, using 1.5 keV free-electron laser pulses. The higher than expected ionization may be due to transient resonance-enhanced absorption and the effect may play an important role in interactions of intense X-rays with high-Z elements and radiation damage.

    • Benedikt Rudek
    • Sang-Kil Son
    • Daniel Rolles
    Research
    Nature Photonics
    Volume: 6, P: 858-865
  • The new European X-Ray Free-Electron Laser (EuXFEL) is the first XFEL that generates X-ray pulses with a megahertz inter-pulse spacing. Here the authors demonstrate that high-quality and damage-free protein structures can be obtained with the currently available 1.1 MHz repetition rate pulses using lysozyme as a test case and furthermore present a β-lactamase structure.

    • Max O. Wiedorn
    • Dominik Oberthür
    • Anton Barty
    ResearchOpen Access
    Nature Communications
    Volume: 9, P: 1-11