Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 112 results
Advanced filters: Author: Ian Brennan Clear advanced filters
  • Genome-wide analyses identify 30 independent loci associated with obsessive–compulsive disorder, highlighting genetic overlap with other psychiatric disorders and implicating putative effector genes and cell types contributing to its etiology.

    • Nora I. Strom
    • Zachary F. Gerring
    • Manuel Mattheisen
    ResearchOpen Access
    Nature Genetics
    Volume: 57, P: 1389-1401
  • In cancer many gene variants may contribute to disease etiology, but the impact of a given gene variant may have varied effect size. Here, the authors analyse summary statistics of genome-wide association studies from fourteen cancers, and show the utility of polygenic risk scores may vary depending on cancer type.

    • Yan Dora Zhang
    • Amber N. Hurson
    • Montserrat Garcia-Closas
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • CONSORT 2025 provides updated guidance to authors, reviewers and editors, when writing and evaluating manuscripts of randomized trials to ensure that trial reports are clear and transparent

    • Sally Hopewell
    • An-Wen Chan
    • Isabelle Boutron
    Reviews
    Nature Medicine
    Volume: 31, P: 1776-1783
  • A global network of researchers was formed to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity; this paper reports 13 genome-wide significant loci and potentially actionable mechanisms in response to infection.

    • Mari E. K. Niemi
    • Juha Karjalainen
    • Chloe Donohue
    ResearchOpen Access
    Nature
    Volume: 600, P: 472-477
  • Comprehensive integration of gene expression with epigenetic features is needed to understand the transition of kidney cells from health to injury. Here, the authors integrate dual single nucleus RNA expression and chromatin accessibility, DNA methylation, and histone modifications to decipher the chromatin landscape of the kidney in reference and adaptive injury cell states, identifying a transcription factor network of ELF3, KLF6, and KLF10 which regulates adaptive repair and maladaptive failed repair.

    • Debora L. Gisch
    • Michelle Brennan
    • Michael T. Eadon
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-21
  • Using a globally distributed standardized aerial sampling of fungal spores, we show that the hyperdiverse kingdom of fungi follows globally highly predictable spatial and temporal dynamics, with seasonality in both species richness and community composition increasing with latitude.

    • Nerea Abrego
    • Brendan Furneaux
    • Otso Ovaskainen
    ResearchOpen Access
    Nature
    Volume: 631, P: 835-842
  • A region on chromosome 19p13 is associated with the risk of developing ovarian and breast cancer. Here, the authors genotyped SNPs in this region in thousands of breast and ovarian cancer patients and identified SNPs associated with three genes, which were analysed with functional studies.

    • Kate Lawrenson
    • Siddhartha Kar
    • Simon A. Gayther
    ResearchOpen Access
    Nature Communications
    Volume: 7, P: 1-22
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Previous work has identified several genes where mutations lead to breast cancer, but other genetic and environmental factors must still be accounted for. A large study of genetic association with breast cancer points to four novel genes and many more genetic markers that should be pursued for their link to cancer susceptibility.

    • Douglas F. Easton
    • Karen A. Pooley
    • Bruce A. J. Ponder
    Research
    Nature
    Volume: 447, P: 1087-1093
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Some cancer patients first present with metastases where the ___location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Douglas Easton, Per Hall and colleagues report meta-analyses of genome-wide association studies for breast cancer, including 10,052 cases and 12,575 controls, followed by genotyping using the iCOGS array in an additional 52,675 cases and 49,436 controls from studies within the Breast Cancer Association Consortium (BCAC). They identify 41 loci newly associated with susceptibility to breast cancer.

    • Kyriaki Michailidou
    • Per Hall
    • Douglas F Easton
    Research
    Nature Genetics
    Volume: 45, P: 353-361
  • Similarities in cancers can be studied to interrogate their etiology. Here, the authors use genome-wide association study summary statistics from six cancer types based on 296,215 cases and 301,319 controls of European ancestry, showing that solid tumours arising from different tissues share a degree of common germline genetic basis.

    • Xia Jiang
    • Hilary K. Finucane
    • Sara Lindström
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-23
  • DNA methylation is associated with breast cancer risk. Here the authors measure DNA methylation in the blood of individuals from 25 Australian families with multiple cases of breast cancer but not known mutations associated with breast cancer risk to identify possible heritable methylation markers.

    • Jihoon E. Joo
    • James G. Dowty
    • Yoland Antill
    ResearchOpen Access
    Nature Communications
    Volume: 9, P: 1-12
  • Previous studies identified an association between the 2q35 locus and breast cancer. Here, the authors show that a SNP at 2q35, rs4442975, is associated with oestrogen receptor positive disease and suggest that this effect is mediated through the downregulation of a known breast cancer gene, IGFBP5.

    • Maya Ghoussaini
    • Stacey L. Edwards
    • Anna De Fazio
    Research
    Nature Communications
    Volume: 5, P: 1-12
  • COVID-19 can be associated with neurological complications. Here the authors show that markers of brain injury, but not immune markers, are elevated in the blood of patients with COVID-19 both early and months after SARS-CoV-2 infection, particularly in those with brain dysfunction or neurological diagnoses.

    • Benedict D. Michael
    • Cordelia Dunai
    • David K. Menon
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-15
  • The microbial communities in the human intestine vary between individuals, and this variation is greater in older people; here it is shown that diet is the main factor that drives microbiota variation, which correlates with health.

    • Marcus J. Claesson
    • Ian B. Jeffery
    • Paul W. O’Toole
    Research
    Nature
    Volume: 488, P: 178-184
  • A genome-wide association study and Metabochip meta-analysis of body mass index (BMI) detects 97 BMI-associated loci, of which 56 were novel, and many loci have effects on other metabolic phenotypes; pathway analyses implicate the central nervous system in obesity susceptibility and new pathways such as those related to synaptic function, energy metabolism, lipid biology and adipogenesis.

    • Adam E. Locke
    • Bratati Kahali
    • Elizabeth K. Speliotes
    Research
    Nature
    Volume: 518, P: 197-206
  • Alison Dunning, Stacey Edwards and colleagues analyze 3,872 common variants across the ESR1 locus in 118,816 women. They find five independent variants within regulatory regions that associate with different breast cancer–related phenotypes and regulate the expression of ESR1, RMND1 and CCDC170.

    • Alison M Dunning
    • Kyriaki Michailidou
    • Stacey L Edwards
    Research
    Nature Genetics
    Volume: 48, P: 374-386
  • Association analysis identifies 65 new breast cancer risk loci, predicts target genes for known risk loci and demonstrates a strong overlap with somatic driver genes in breast tumours.

    • Kyriaki Michailidou
    • Sara Lindström
    • Douglas F. Easton
    Research
    Nature
    Volume: 551, P: 92-94