For the emergent colossal, reversible barocaloric effect in organic–inorganic perovskite hybrids (CH3–(CH2)n−1–NH3)2MnCl4 (n = 9, 10), we successfully grew a single crystal, and the underlying mechanism was determined by high-resolution SC-XRD, IR spectroscopy and DFT calculations. The drastic transformation of organic chains confined to the metallic frame from ordered rigidity to disordered flexibility is responsible for the large phase-transition entropy, which is comparable to the melting entropy of organic chains. The result provides new insights into designing novel barocaloric materials by utilizing the disordering of organic chains of organic–inorganic hybrid materials.
- Yihong Gao
- Hongxiong Liu
- Baogen Shen