Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

In-depth determination and analysis of the human paired heavy- and light-chain antibody repertoire

Abstract

High-throughput immune repertoire sequencing has emerged as a critical step in the understanding of adaptive responses following infection or vaccination or in autoimmunity. However, determination of native antibody variable heavy-light pairs (VH-VL pairs) remains a major challenge, and no technologies exist to adequately interrogate the >1 × 106 B cells in typical specimens. We developed a low-cost, single-cell, emulsion-based technology for sequencing antibody VH-VL repertoires from >2 × 106 B cells per experiment with demonstrated pairing precision >97%. A simple flow-focusing apparatus was used to sequester single B cells into emulsion droplets containing lysis buffer and magnetic beads for mRNA capture; subsequent emulsion RT-PCR generated VH-VL amplicons for next-generation sequencing. Massive VH-VL repertoire analyses of three human donors provided new immunological insights including (i) the identity, frequency and pairing propensity of shared, or 'public', VL genes, (ii) the detection of allelic inclusion (an implicated autoimmune mechanism) in healthy individuals and (iii) the occurrence of antibodies with features, in terms of gene usage and CDR3 length, associated with broadly neutralizing antibodies to rapidly evolving viruses such as HIV-1 and influenza.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Technical workflow for ultra-high throughput VH-VL sequencing from single B cells.
Figure 2: Heavy-light V-gene pairing landscape of CD3CD19+CD20+CD27+ peripheral memory B cells in two healthy human donors.
Figure 3: VH pairing statistics for representative promiscuous and public light chains.
Figure 4: Frequency of VL transcript allelic inclusion in two donors (n = 184 and n = 64 allelically included antibodies from n = 37,995 and n = 19,096 VH-VL clusters detected across replicates in donor 1 and donor 2, respectively).

Similar content being viewed by others

Accession codes

Primary accessions

Sequence Read Archive

References

  1. Warren, E.H., Matsen, F.A. & Chou, J. High-throughput sequencing of B- and T-lymphocyte antigen receptors in hematology. Blood 122, 19–22 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Georgiou, G. et al. The promise and challenge of high-throughput sequencing of the antibody repertoire. Nat. Biotechnol. 32, 158–168 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Logan, A.C. et al. High-throughput VDJ sequencing for quantification of minimal residual disease in chronic lymphocytic leukemia and immune reconstitution assessment. Proc. Natl. Acad. Sci. USA 108, 21194–21199 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. DeKosky, B.J. et al. High-throughput sequencing of the paired human immunoglobulin heavy and light chain repertoire. Nat. Biotechnol. 31, 166–169 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sasaki, S. et al. Limited efficacy of inactivated influenza vaccine in elderly individuals is associated with decreased production of vaccine-specific antibodies. J. Clin. Invest. 121, 3109–3119 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Smith, K. et al. Rapid generation of fully human monoclonal antibodies specific to a vaccinating antigen. Nat. Protoc. 4, 372–384 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Doria-Rose, N.A. et al. Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies. Nature 509, 55–62 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wu, X. et al. Focused evolution of HIV-1 neutralizing antibodies revealed by structures and deep sequencing. Science 333, 1593–1602 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fischer, N. Sequencing antibody repertoires: the next generation. MAbs 3, 17–20 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wilson, P.C. & Andrews, S.F. Tools to therapeutically harness the human antibody response. Nat. Rev. Immunol. 12, 709–719 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Finn, J.A. & Crowe, J.E. Jr. Impact of new sequencing technologies on studies of the human B cell repertoire. Curr. Opin. Immunol. 25, 613–618 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Finco, O. & Rappuoli, R. Designing vaccines for the twenty-first century society. Front. Immunol. 5, 12 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Newell, E.W. & Davis, M.M. Beyond model antigens: high-dimensional methods for the analysis of antigen-specific T cells. Nat. Biotechnol. 32, 149–157 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Marcus, J.S., Anderson, W.F. & Quake, S.R. Microfluidic single-cell mRNA isolation and analysis. Anal. Chem. 78, 3084–3089 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. White, A.K. et al. High-throughput microfluidic single-cell RT-qPCR. Proc. Natl. Acad. Sci. USA 108, 13999–14004 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Furutani, S., Nagai, H., Takamura, Y., Aoyama, Y. & Kubo, I. Detection of expressed gene in isolated single cells in microchambers by a novel hot cell-direct RT-PCR method. Analyst 137, 2951–2957 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Turchaninova, M.A. et al. Pairing of T-cell receptor chains via emulsion PCR. Eur. J. Immunol. 43, 2507–2515 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Berkland, C., Kim, K.K. & Pack, D.W. Fabrication of PLG microspheres with precisely controlled and monodisperse size distributions. J. Control. Release 73, 59–74 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Berkland, C., Pollauf, E., Pack, D.W. & Kim, K. Uniform double-walled polymer microspheres of controllable shell thickness. J. Control. Release 96, 101–111 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Jackson, K.J.L., Kidd, M.J., Wang, Y. & Collins, A.M. The shape of the lymphocyte receptor repertoire: lessons from the B cell receptor. Front. Immunol. 4, 263 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Jackson, K.J.L. et al. Divergent human populations show extensive shared IGK rearrangements in peripheral blood B cells. Immunogenetics 64, 3–14 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Hoi, K.H. & Ippolito, G.C. Intrinsic bias and public rearrangements in the human immunoglobulin Vλ light chain repertoire. Genes Immun. 14, 271–276 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Ippolito, G.C. et al. Antibody repertoires in humanized NOD-scid-IL2R γnull mice and human b cells reveals human-like diversification and tolerance checkpoints in the mouse. PLoS ONE 7, e35497 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Glanville, J. et al. Naive antibody gene-segment frequencies are heritable and unaltered by chronic lymphocyte ablation. Proc. Natl. Acad. Sci. USA 108, 20066–20071 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pelanda, R. Dual immunoglobulin light chain B cells: trojan horses of autoimmunity? Curr. Opin. Immunol. 27, 53–59 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Liu, S. et al. Receptor editing can lead to allelic inclusion and development of B cells that retain antibodies reacting with high avidity autoantigens. J. Immunol. 175, 5067–5076 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Rezanka, L.J., Kenny, J.J. & Longo, D.L. Dual isotype expressing B cells [κ++] arise during the ontogeny of B cells in the bone marrow of normal nontransgenic mice. Cell. Immunol. 238, 38–48 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Casellas, R. et al. Igκ allelic inclusion is a consequence of receptor editing. J. Exp. Med. 204, 153–160 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Andrews, S.F. et al. Global analysis of B cell selection using an immunoglobulin light chain–mediated model of autoreactivity. J. Exp. Med. 210, 125–142 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Giachino, C., Padovan, E. & Lanzavecchia, A. κ+λ+ dual receptor B cells are present in the human peripheral repertoire. J. Exp. Med. 181, 1245–1250 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Corti, D. et al. A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. Science 333, 850–856 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Wrammert, J. et al. Broadly cross-reactive antibodies dominate the human B cell response against 2009 pandemic H1N1 influenza virus infection. J. Exp. Med. 208, 181–193 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jardine, J. et al. Rational HIV immunogen design to target specific germline B cell receptors. Science 340, 711–716 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhou, T. et al. Multidonor analysis reveals structural elements, genetic determinants, and maturation pathway for HIV-1 neutralization by VRC01-class antibodies. Immunity 39, 245–258 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Busse, C.E., Czogiel, I., Braun, P., Arndt, P.F. & Wardemann, H. Single-cell based high-throughput sequencing of full-length immunoglobulin heavy and light chain genes. Eur. J. Immunol. 44, 597–603 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Parameswaran, P. et al. Convergent antibody signatures in human dengue. Cell Host Microbe 13, 691–700 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jackson, K.J.L. et al. Human responses to influenza vaccination show seroconversion signatures and convergent antibody rearrangements. Cell Host Microbe 16, 105–114 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lavinder, J.J. et al. Identification and characterization of the constituent human serum antibodies elicited by vaccination. Proc. Natl. Acad. Sci. USA 111, 2259–2264 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wine, Y. et al. Molecular deconvolution of the monoclonal antibodies that comprise the polyclonal serum response. Proc. Natl. Acad. Sci. USA 110, 2993–2998 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Boutz, D.R. et al. Proteomic identification of monoclonal antibodies from serum. Anal. Chem. 86, 4758–4766 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Recher, M. et al. IL-21 is the primary common γ chain-binding cytokine required for human B-cell differentiation in vivo. Blood 118, 6824–6835 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wardemann, H. et al. Predominant autoantibody production by early human B cell precursors. Science 301, 1374–1377 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Brochet, X., Lefranc, M.-P. & Giudicelli, V. IMGT/V-QUEST: the highly customized and integrated system for IG and TR standardized V-J and V-D-J sequence analysis. Nucleic Acids Res. 36, W503–W508 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Saha, S. & Raghava, G.P.S. AlgPred: prediction of allergenic proteins and mapping of IgE epitopes. Nucleic Acids Res. 34, W202–W209 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank C. Berkland, M. Singh and N. Dormer for critical help and advice. We thank B. Iverson and D. Derryberry for insightful feedback, M. Ronalter, C. Das, M. Wirth and Y. Wine for help with experiments, J. Lavinder for reviewing the manuscript, O. Lungu for help with data analysis, B. Briney for sharing an unpublished primer sequence, L. Morris (National Institute for Communicable Diseases of the National Health Laboratory Service, South Africa) and P. Kwong (Vaccine Research Center, NIAID, USA) for sharing CAP256 samples, C. McHenry for PacBio sequencing, and J. Wheeler and S. Hunicke-Smith for Illumina MiSeq sequencing. This work was funded by fellowships to B.J.D. from the Hertz Foundation, the University of Texas Donald D. Harrington Foundation and the National Science Foundation, and by the US Defense Threat Reduction Agency (DTRA) HDTRA1-12-C-0105 (G.G.). A.D.E. would like to acknowledge funding from US National Security Science and Engineering Faculty Fellowship (FA9550-10-1-0169) and grants from the DTRA (HDTRA1-12-C-0007) and the Welch Foundation (F-1654). The content is solely the responsibility of the authors and do not necessarily represent the official views of the sponsors.

Author information

Authors and Affiliations

Authors

Contributions

B.J.D. and G.G. developed the methodology and wrote the manuscript; B.J.D., T.K., G.C.I., A.D.E. and G.G. designed the experiments; B.J.D., T.K., A.R. and W.C. performed the experiments; B.J.D. carried out the bioinformatic analysis; and B.J.D. and T.K. analyzed the data.

Corresponding author

Correspondence to George Georgiou.

Ethics declarations

Competing interests

G.G., B.J.D. and A.D.E. declare competing financial interests in the form of a provisional patent for high-throughput sequencing of multiple transcripts from single cells, filed by the University of Texas, Austin, to the US Patent and Trademark Office and under the Patent Cooperation Treaty.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Tables 1–4 (PDF 2761 kb)

Supplementary Data Set 1

Sequenced VH:VL clusters for the all replicates of Donors 1, 2, and 3 (XLSX 18013 kb)

Supplementary Data Set 2

Quantitative list of CDR-L3 junctions observed in Donors 1, 2, and 3, sorted by prevalence in the three datasets (XLSX 8399 kb)

Supplementary Data Set 3

FASTA file containing allelically included pairs observed in all donors (TXT 215 kb)

Supplementary Data Set 4

FASTA file containing allelically included pairs with stop codons (TXT 4 kb)

Supplementary Data Set 5

FASTA file containing full-length VH:VL sequences from PacBio data that encoded VRC26-class antibodies (TXT 5 kb)

Supplementary Data Set 6

FASTA file containing Sanger sequences of VH and VL plasmids used in HEK293 transfections (TXT 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DeKosky, B., Kojima, T., Rodin, A. et al. In-depth determination and analysis of the human paired heavy- and light-chain antibody repertoire. Nat Med 21, 86–91 (2015). https://doi.org/10.1038/nm.3743

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3743

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing